I need an asymptotic expansion/closed form for $$\sum_{k=1}^{\infty}\int_{0}^{\infty}(B(x+n+k,n+1))^2\ dx$$ where $B(m,n)$ is the Beta function and $n\in\mathbb{N}$.
Denote $$I_n=\sum_{k=1}^{\infty}\int_{0}^{\infty}(B(x+n+k,n+1))^2\ dx$$ By definition of Beta function $$I_n=\sum_{k=1}^{\infty}\int_{0}^{\infty}\left(\frac{\Gamma(x+n+k)\Gamma(n+1)}{\Gamma(x+2n+k+1)}\right)^2\ dx$$ $$I_n=(n!)^2\sum_{k=1}^{\infty}\int_{0}^{\infty}\left(\frac{\Gamma(x+n+k)}{\Gamma(x+2n+k+1)}\right)^2\ dx$$ Now interchanging the summation and integral (which needs to be justified) we get $$I_n=(n!)^2\int_{0}^{\infty}\sum_{k=1}^{\infty}\left(\frac{\Gamma(x+n+k)}{\Gamma(x+2n+k+1)}\right)^2\ dx$$ Now the infinite sum above is see here
$$I_n=(n!)^2\int_{0}^{\infty} \left(\frac{\Gamma(x+n+1)}{\Gamma(x+2n+2)}\right)^2{}_3F_2\left ( 1,x+n+1,x+n+1;x+2n+2,x+2n+2;1 \right)dx$$
where ${}_3F_2$ represents the hypergeometric function.
Thank you!
Edit: @Gary and @TymaGaidash have in their elegant answers found that $$\sum_{k=1}^{\infty}\int_{0}^{\infty}\operatorname B^2(x+n+k,n+1)\ dx =\binom{2n}n\gamma-\sum_{j=0}^n\binom nj^2(2(H_{n-j}-H_j)\ln((j+n)!)+H_{n+j})$$ So if we define$$a_n:= \sum_{j=0}^n\binom nj^2(2(H_{n-j}-H_j)\ln((j+n)!) $$ I need an asymptotic expansion for $a_n$ as $n\to \infty$. I believe that we can apply Laplace's method of asymptotic expansion of integrals (see here p.$322$)
Question: I need to prove that the limit $$ \lim_{n\to \infty} \frac{n\ 4^{2n}}{e^{2n}}\{-d_{2n} a_n\}\leq \frac{3}{4}$$ where $d_{2n}=\text{LCM}(1,2,...,2n)$, $\{x\}$ is the fractional part of $x$ and $a_n$ is defined as above.
Edit Can we at least simplify the above fractional part $\{-d_{2n} a_n\}$? Can we use the (anti) symmetry in $a_n$ to get a simpler form of $\{-d_{2n} a_n\}$?
I would really appreciate an answer which I can accept. Thank you!