How we can get $(a+b+4c)^3$ in the following Holder's step?
$$\sum_{cyc}\sqrt{\frac{a+b}{ab+1}}=\sqrt{\frac{\left(\sum\limits_{cyc}\sqrt{\frac{a+b}{ab+1}}\right)^2\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+4c)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+4c)^3}}\geq$$
$$\geq\sqrt{\frac{\left(\sum\limits_{cyc}(a+b)(a+b+4c)\right)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+4c)^3}}=\sqrt{\frac{8\left(\sum\limits_{cyc}(a^2+5ab)\right)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+4c)^3}}.$$
We need to prove $$\sum_{cyc}\sqrt{\frac{a+b}{ab+1}}\geq\frac{a+b+c+3}{\sqrt{a+b+c+abc}},$$ where $a$, $b$ and $c$ are non-negatives such that $ab+ac+bc=3$.
Let $c=0$ and $a=b=\sqrt3$.
Thus, should be $$2\sqrt[4]3+\frac{\sqrt[4]{12}}{2}-\frac{2\sqrt3+3}{\sqrt[4]{12}}>0.$$
But $$2\sqrt[4]3+\frac{\sqrt[4]{12}}{2}-\frac{2\sqrt3+3}{\sqrt[4]{12}}=0.0896...$$
Now,for $k\geq0$ by Holder $$\sum_{cyc}\sqrt{\frac{a+b}{ab+1}}=\sqrt{\frac{\left(\sum\limits_{cyc}\sqrt{\frac{a+b}{ab+1}}\right)^2\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+kc)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+kc)^3}}\geq$$
$$\geq\sqrt{\frac{\left(\sum\limits_{cyc}(a+b)(a+b+kc)\right)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+kc)^3}}=\sqrt{\frac{8\left(\sum\limits_{cyc}(a^2+(k+1)ab)\right)^3}{\sum\limits_{cyc}(a+b)^2(ab+1)(a+b+kc)^3}}.$$
Holder it's the following.
Let $a_i>0$, $b_i>0$,$\alpha>0$ and $\beta>0$. Prove that:
$$\left(\sum_{i=1}^na_i\right)^{\alpha}\left(\sum_{i=1}^nb_i\right)^{\beta}\geq\left(\sum_{i=1}^n\left(a_i^{\alpha}b_i^{\beta}\right)^{\frac{1}{\alpha+\beta}}\right)^{\alpha+\beta}.$$
The equality occurs, when $(a_1,a_2,...,a_n)||(b_1,b_2,...,b_n).$
Id est, in the previous Holder the equality occurs for
$$\left(\sqrt{\frac{a+b}{ab+1}},\sqrt{\frac{b+c}{bc+1}},\sqrt{\frac{c+a}{ca+1}}\right)||$$
$$||\left((a+b)^2(ab+1)(a+b+kc)^3,(b+c)^2(bc+1)(b+c+ka)^3,(c+a)^2(ca+1)(c+a+kb)^3\right),$$ which gives
$$\sqrt{(a+b)(ab+1)}(a+b+kc)=\sqrt{(b+c)(bc+1)}(b+c+ka)=\sqrt{(c+a)(ca+1)}(c+a+kb),$$ which for $c=0$ and $a=b=\sqrt3$ gives:
$$\sqrt{2\sqrt3\cdot4}(2\sqrt3+0)=\sqrt{\sqrt3\cdot1}(\sqrt3+k\sqrt3)$$ or
$$k=4\sqrt2-1\approx4.65685$$ and we can try to use $k=4$, which leads to a right inequality.