Given $A \in \mathbb{R}^{m \times n}$. Is there any way to find a closed form solution for $$ \max_{\sum_{i=1}^n x_i=1, \quad x_i\geq 0} \sum_{j=1}^m\sum_{i=1}^n A_{j i}x_i? $$
The max can be changed to $\min$ as follows: $$ \min_{\sum_{i=1}^n x_i=1, \quad x_i\geq 0} -\sum_{j=1}^m\sum_{i=1}^n A_{j i}x_i? $$ Then one can write the Lagrangian as follows:
$$ L(x, \lambda_0, \lambda)=-\sum_{j=1}^m\sum_{i=1}^n A_{j i} x_i +\lambda_0(\sum_{i=1}^n x_i=1)+\lambda_i(-x_i) $$ where $\lambda_0 \in \mathbb{R}$ and $0 \leq \lambda \in \mathbb{R}^n$. Then stationary and KKT conditions are as follows:
$$ -\sum_{j=1}^m A_{j i}+\lambda_0-\lambda_i=0, $$ and $\lambda_i(x_i)=0$ and $\lambda_i \geq 0$.