I. Coefficients $\pmb{C_k}$
Given the sample decic above,
$$x^{10} + x^6 + x^5 + x^4 + 2x^3 + x^2 + x + 1 = 0$$
and the deg-$9$ Tschirnhausen transformation,
$$y=x^9+ax^8+bx^7+cx^6+dx^5+ex^4+fx^3+gx^2+mx+n$$
Using resultants to eliminate $x$ between the two yields a new decic,
$$y^{10}+C_1y^9+C_2y^8+C_3y^7+C_4y^6+\dots+C_{10} = 0$$
Collecting coefficients with respect to $\color{red}m$, the $C_k$ above have the form,
$$C_1=\alpha_1$$
$$C_2=\alpha_2m+\alpha_3$$
$$C_3=\alpha_4m^2+\alpha_5m+\alpha_6$$
The objective is to make all six $a_k = 0$, and that frees up $m$ to solve $C_4 = 0$. I obtained the following explicit expressions for the six $\alpha_k$,
$$\alpha_1=4a+14b+6c+5d+4e-10n$$
$$\alpha_2=4b+14c+6d+5e+4f-5$$
$$\alpha_3=34a^2+61ab-18ac-19ad-22ae-33af-5ag-36an+102a+77b^2+45bc+32bd+23be-5bf-126bn+52b-c^2-3cd+19ce+4cg-54cn+5c+10d^2+20de+4df+14dg-45dn-42d+10e^2+14ef+6eg-36en-39e+3f^2+5fg-38f+2g^2-33g+45n^2+93$$
$$\alpha_4=-5a+4c+14d+6e+5f+4g-33$$
$$\alpha_5=102a^2+120ab+66ac-60ad-58ae-60af-66ag+352a+61b^2+136bc+26bd+10be-10bf-10bg-32bn+134b+45c^2+30cd+20ce+14cf-112cn+74c-3d^2+39de+20df+8dg-48dn-15d+20e^2+24ef+28eg-40en-104e+14f^2+12fg-32fn-78f+5g^2-76g+40n+190$$
$$\alpha_6=-130a^3-10a^2b-195a^2c+49a^2d+123a^2e+58a^2f+166a^2g-272a^2n-487a^2+147ab^2-308abc-115abd-40abe-110abf+134abg-488abn+168ab-117ac^2-76acd+52ace+6acf+90acg+144acn-380ac+31ad^2-62ade-45adf+41adg+152adn-120ad-60ae^2-66aef-80aeg+176aen+322ae-30af^2-58afg+264afn+126af-30ag^2+40agn+248ag+144an^2-816an-291a+175b^3+55b^2c+43b^2d+32b^2e+32b^2f+52b^2g-616b^2n+222b^2-58bc^2-93bcd+116bce+74bcf+66bcg-360bcn-80bc+52bd^2+67bde+41bdf+112bdg-256bdn-258bd+13be^2+92bef+6beg-184ben-60be+3bf^2-6bfg+40bfn-152bf-5bg^2-90bg+504bn^2-416bn+407b-16c^3-101c^2d+18c^2e+5c^2f-18c^2g+8c^2n+65c^2-53cd^2-27cde-60cdf+26cdg+24cdn+51cd-2ce^2+6cef-24ceg-152cen+166ce-20cf^2-36cfg+144cf+7cg^2-32cgn+6cg+216cn^2-40cn-176c+10d^3-2d^2e-19d^2f+32d^2g-80d^2n-20d^2+11de^2+10def+20deg-160den+9de-18df^2+15dfg-32dfn+14df+10dg^2-112dgn-61dg+180dn^2+336dn-41d+6e^3+23e^2f+19e^2g-80e^2n-54e^2+7ef^2+20efg-112efn-48ef+12eg^2-48egn-122eg+144en^2+312en+141e+4f^2g-24f^2n+5f^2+14fg^2-40fgn-84fg+304fn+35f+2g^3-16g^2n-39g^2+264gn+139g-120n^3-744n-18$$
II. Equations
Let $\alpha_1=\alpha_2=\alpha_4=0$ and solve for $(f,g,n)$,
$$f=(5 - 4 b - 14 c - 6 d - 5 e)/4$$
$$g=(107 + 20 a + 20 b + 54 c - 26 d + e)/16$$
$$n=(4 a + 14 b + 6 c + 5 d + 4 e)/10$$
Substitute into $\alpha_3=\alpha_5=\alpha_6=0$,
$$A=15152a^2+23904ab+37776ac+13200ad+2904ae+17480a-4048b^2-5744bc-6640bd-17896be+27400b-2068c^2+6040cd-16764ce+13740c-3700d^2-7900de+33420d-6413e^2+9570e-25125=0,$$
$$B=6992a^2+21920ab+10992ac+26736ad+7656ae-40200a+16720b^2+43632bc+16880bd+12584be+6328b+21172c^2+16808cd+21596ce-4876c+7156d^2+1980de-492d+3253e^2+17166e-17907=0,$$
$$C=2504128a^3+10113984a^2b+4899296a^2c+12687200a^2d+3815184a^2e-18183120a^2+11793984ab^2+24113472abc+21200960abd+8719968abe-12778720ab+13099984ac^2+16734240acd+13819952ace-9046640ac+13752400ad^2+4777200ade-26629680ad+1585844ae^2+6063800ae+10060500a+3108928b^3+11201376b^2c+8948960b^2d+1896784b^2e-1469200b^2+15713904bc^2+16419680bcd+6089232bce+9416240bc+10844400bd^2+2858960bde-18766480bd-915556be^2+5860520be+18776700b+8220392c^3+11387160c^2d+6543524c^2e+9772460c^2+9307000cd^2+3419240cde-10792520cd-1787954ce^2+15593620ce+17469950c+3152200d^3+47300d^2e-5395700d^2-649050de^2+3888420de+1648150d-643437e^3+1551195e^2+5968225e+3104625=0.$$
III. Radicals
To solve this in radicals using similar techniques in this paper by Hamilton, we split $A = B = 0$ into the following parts:
$$A=A_{20}+A_{11}+A_{02}+A_{10}+A_{01}+A_{00},$$
$$B=B_{20}+B_{11}+B_{02}+B_{10}+B_{01}+B_{00}.$$
Where $A_{ij},B_{ij}$ has $i,j$ being the corresponding degree of $2$ tuples that we'll determine later. The first tuple can be used to solve:
$$A_{20}=B_{20}=0$$
which requires a quartic at most and leaves out a free parameter, thus the tuple contain $3$ parameters. Then the second tuple can be used to solve:
$$A_{11}+A_{10} = B_{11}+B_{10}=0$$
$$A_{02}+A_{01}+A_{00} = B_{02}+B_{01}+B_{00}=0$$
which also requires a quartic at most and leaves out no free parameter, thus the tuple contain $4$ parameters. Then the remaining parameter can be used to solve $C=0$, a cubic. In total, we need $7$ parameters, however, we only have $5$, so the following substitution:
$$d=d_1+d_2\\
e=e_1+e_2$$
will suffice and the $2$ tuples are $(a,d_1,e_1),(b,c,d_2,e_2)$ which is chosen as to not have $(d_1,d_2)$ or $(e_1,e_2)$ being in the same tuple.
The first pair:
$$A_{20}=15152a^2+13200ad_1+2904ae_1-3700d_1^2-7900d_1e_1-6413e_1^2=0$$
$$B_{20}=6992a^2+26736ad_1+7656ae_1+7156d_1^2+1980d_1e_1+3253e_1^2=0$$
We use Mathematica's Resultant function to eliminate $e_1$ between $(A_{20}, B_{20})$ to get,
$$3181286163456 a^4 + 34419039798528 a^3 d_1 + 41730391294544 a^2 d_1^2 + 13753474610232 a d_1^3 + 1744056320441 d_1^4$$
and eliminate $d_1$ between $(A_{20}, B_{20})$,
$$41460804249344 a^4 - 16237920052224 a^3 e_1 - 24426455644896 a^2 e_1^2 + 12822251336256 a e_1^3 - 1744056320441 e_1^4=0$$
then solve for $\color{blue}{(d_1,e_1)}$. Since each quartic has four roots, the correct pairing should be chosen such that $A_{20} = B_{20} = 0$. One pair is,
$$d_1\approx-1.09630780731440469241846556\,a \\
e_1\approx1.376776690176728225648890218\,a $$
with "$a$" to be determined later.
The second pair:
$$M_1 = A_{11}+A_{10}=23904ab+37776ac+13200ad_2+2904ae_2+17480a-6640bd_1-17896be_1+6040cd_1-16764ce_1-7400d_1d_2-7900d_1e_2-7900d_2e_1+33420d_1-12826e_1e_2+9570e_1=0$$
$$N_1 = B_{11}+B_{10}=21920ab+10992ac+26736ad_2+7656ae_2-40200a+16880bd_1+12584be_1+16808cd_1+21596ce_1+14312d_1d_2+1980d_1e_2+1980d_2e_1-492d_1+6506e_1e_2+17166e_1=0$$
We then solve for $\color{blue}{(d_2,e_2)}$ in $M_1 = N_1 = 0$ which is easily done since they are just linear.
The third pair:
$$M_2=A_{02}+A_{01}+A_{00}=-4048b^2-5744bc-6640bd_2-17896be_2+27400b-2068c^2+6040cd_2-16764ce_2+13740c-3700d_2^2-7900d_2e_2+33420d_2-6413e_2^2+9570e_2-25125=0$$
$$N_2=B_{02}+B_{01}+B_{00}=16720b^2+43632bc+16880bd_2+12584be_2+6328b+21172c^2+16808cd_2+21596ce_2-4876c+7156d_2^2+1980d_2e_2-492d_2+3253e_2^2+17166e_2-17907=0$$
We first substitute our expressions for $\color{blue}{(d_2,e_2)}$ into $M_2 = N_2 = 0$. They remain quadratic in $(b,c)$. Then eliminate $c$ using resultants to get a quartic in $b$, then eliminate $b$ to get a quartic in $c$. Substituting $\color{blue}{(d_1,e_1)}$ into the two quartics, we can solve for $(b,c)$. As before, choose the correct pairing of roots so that $M_2 = N_2 = 0$. One pair is,
$$b\approx1.546090930591060861991324\\
c\approx-0.26002315195280406578959$$
which also yields,
$$d_2\approx-0.391286738563760310216691\\
e_2\approx-0.335941054168852721652646$$
where the variable "$a$" disappears from both pairs. Recall that,
$$d_1\approx-1.09630780731440469241846556\, a \\
e_1\approx1.376776690176728225648890218\, a$$
and we now have all unknowns except $a$. Substitute all values into $C=0$ (which is just a cubic in "$a$") defined in the Equations Section and any of its three roots can set $A=B=C=0$, one of which is,
$$a\approx-1.195803802373015534143974$$
Since the last variable $m$ is used to solve,
$$C_4 = m^4 + 3.07869451461021m^3 - 7.394031433568m^2 - 205.449166413545m - 181.437427587543 = 0$$
$$\implies m\approx 5.65540144869$$
then we eliminated four terms $C_1 = C_2 = C_3 = C_4 = 0$ of the decic using a nonic Tschirnhausen transformation with coefficients in the radicals and the reduced decic being,
$$y^{10} + 13728.2943025125y^5 + 434442.997136881y^4 + 4108739.12946482y^3 + 19681367.7315521y^2 + 49372512.1956258y + 57283977.8917708=0$$
also with coefficients in the radicals (approximate values above).