I am trying to find the reproducing kernel Hilbert space induced by the symmetric positive definite (and bounded and measurable) kernel $$ k \colon X \times X \to \{ 0, 1 \}, \qquad (x, y) \mapsto %\delta_{x, y} := \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \ne y \end{cases}, $$ where $X$ is a uncountably infinite set, e.g. $X = [0, 1]$ or $X = \mathbb R$ (let us assume that $X$ is second countable and equipped with the Borel sigma algebra).
My work so far: The set $H_{\text{pre}} := \text{span}\{ k(x, \cdot): x \in X \}$ becomes an infinite-dimensional inner product space with respect to the inner product $$ \left\langle \sum_{i = 1}^{n} a_i k(x_i, \cdot), \sum_{j = 1}^{m} b_j k(y_j, \cdot) \right\rangle_{H_{\text{pre}}} := \sum_{i = 1}^{n} \sum_{j = 1}^{m} a_i b_j k(x_i, y_j). $$ In order to find the completion of $H_{\text{pre}}$ with respect to this inner product, I want to find $H := \overline{\iota(H_{\text{pre}})}$, where $\iota \colon H_{\text{pre}} \to H_{\text{pre}}^{**}$, $f \mapsto \Lambda_f$ is the canonical injection into the topological bidual space and $\Lambda_f(\Phi) := \Phi(f)$ for $\Phi \in H_{\text{pre}}^*$ (this is mentioned in this answer by Daniel Fisher). The inner product on $\iota(H_{\text{pre}})$ is $\langle \Lambda_f, \Lambda_g \rangle := \langle f, g \rangle_{H_{\text{pre}}}$, where $f, g \in H_{\text{pre}}$, which can be extended by continuity to $H$.
The set $\mathcal B := \{ k(x, \cdot): x \in X \}$ is an orthonormal basis for $H_{\text{pre}}$. In order to find the topological dual space ${H_{\text{pre}}}^*$, I consider the dual set $$ \mathcal B^* := \{ h \mapsto \langle k(x, \cdot), h \rangle_{H_{\text{pre}}}: x \in H_{\text{pre}} \}. $$ If I am not mistaken, $\mathcal B^*$ is also orthonormal. Note that $\langle k(x, \cdot), h \rangle_{H_{\text{pre}}} = h(x)$ for $h \in H_{\text{pre}}$, so that $\mathcal B^* := \{ \text{ev}_x: x \in X \}$, where $\text{ev}_x \colon H_{\text{pre}} \to \mathbb R$, $h \mapsto h(x)$ is the evaluation functional at $x$. Since $\text{ev}_x(k(y, \cdot)) = k(x, y) = \delta_{x, y}$, $(\mathcal B, \mathcal B^*)$ form an biorthogonal system.
Writing $x = \sum_{i = 1}^{n} a_i k(x_i, \cdot) \in H_{\text{pre}}$ and $f = \sum_{j = 1}^{m} b_j \text{ev}_{y_j}$ we have $$ \iota(x)(f) = \sum_{i = 1}^{n} \sum_{j = 1}^{m} a_i b_j k(x_i, y_j). $$
My questions
Is $\mathcal B^*$ a basis of ${H_{\text{pre}}}^*$, that is, is every functional of $H_{\text{pre}}$ a linear combination of evaluation functionals? Is there a neat representation for the RKHS $H$, e.g. $H = \{ \sum_{k = 1}^{\infty} a_k k(x_k, \cdot): (x_k)_{k = 1}^{\infty} \subset X, (a_k)_{k = 1}^{\infty} \in \ell^1 \}$ in the case that $X \subset \mathbb R^d$?
Proof (that $\mathcal B$ is an ONB). For $x, y \in X$ we have $\langle k(x, \cdot), k(y, \cdot) \rangle_{H_{\text{pre}}} = k(x, y) = \delta_{x, y}$. Lastly, $\mathcal B$ is complete: if $\ell \in H_{\text{pre}}$ is in $\mathcal B^{\perp}$, then $\ell(k(x, \cdot)) = 0$ for all $x \in X$ and thus $\ell(f) = 0$ for all $f \in H_{\text{pre}}$. $\square$
By @porridgemathematics's comment we know that $$ H = \left\{ \sum_{k = 1}^{\infty} a_k k(x_k, \cdot): \lim_{n \to \infty} \sup_{p \in \mathbb N_{\ge 0}} \sqrt{\sum_{k = n}^{n + p} a_k^2} = 0 \right\}. $$ Since $p \mapsto \sqrt{\sum_{k = n}^{n + p} a_k^2}$ is non-decreasing, I think we can rewrite the condition as $$ \lim_{n \to \infty} \sqrt{\sum_{k = n}^{\infty} a_k^2} = 0, $$ so $H \subset \ell^2(\mathbb N; X)$ if $X$ is nice enough.