This answer uses the fact that
$$3.14\lt\pi\lt\frac{22}{7}$$
(see here and here)
$f(x)$ is defined only for $x\in [-1,1]$ and is non differentiable when $\sin (kx)=0$ i.e $kx=m\pi$ where $m$ is an integer.
Since $-1\leq \frac{m\pi}{k}\leq 1$, we have $\frac{-k}{\pi}\le m\le \frac{k}{\pi}$. So, the number of such integers $m$ is given by $g(k):=2\lfloor\frac{k}{\pi}\rfloor+1$.
(1)
Since $k_2=k_1+1,k_3=k_1+2$ and $k_4=k_1+3$, we have $94=k_1+(k_1+1)+(k_1+2)+(k_2+3)$ which implies $k_1=22$. Now, since $7\lt \frac{22}{\pi}\lt\frac{25}{\pi}\lt 8$, we have $g(22)=g(23)=g(24)=g(25)=15$, so (1) is correct.
(2)
Similarly, we get $k_1=44$. Now, since $14\lt \frac{44}{\pi}\lt\frac{47}{\pi}\lt 15$, we have $g(44)=g(45)=g(46)=g(47)=29$, so (2) is correct.
(3)
Similarly, we get $k_1=88$. Now, since $28\lt \frac{88}{\pi}\lt\frac{91}{\pi}\lt 29$, we have $g(88)=g(89)=g(90)=g(91)=57$, so (3) is correct.
(4)
We can get the value of $g(k)$ using the inequality $3.14\lt\pi\lt\frac{22}{7}$.
For $m=0,1,\cdots, 6$, we have $g(3m+1)=g(3m+2)=g(3m+3)=2m+1$ since $$m\lt\frac{3m+1}{\pi}\lt\frac{3m+3}{\pi}\lt m+1$$ (For $m=0$, this holds. For $1\le m\le 6$, this holds since $3\lt\pi\lt 3+\frac 16\le 3+\frac 1m$.)
$g(22)=g(23)=g(24)=g(25)=15$ since $7\lt \frac{22}{\pi}\lt\frac{25}{\pi}\lt 8$
For $m=8,9,\cdots, 13$, we have $g(3m+2)=g(3m+3)=g(3m+4)=2m+1$ since $$m\lt\frac{3m+2}{\pi}\lt\frac{3m+4}{\pi}\lt m+1$$
(This holds since $3+\frac{1}{m+1}\le 3+\frac{1}{8+1}\lt\pi\lt 3+\frac{2}{13}\le 3+\frac 2m$)
$g(44)=g(45)=g(46)=g(47)=29$ since $14\lt \frac{44}{\pi}\lt\frac{47}{\pi}\lt 15$
For $m=15,16,\cdots, 20$, we have $g(3m+3)=g(3m+4)=g(3m+5)=2m+1$ since $$m\lt\frac{3m+3}{\pi}\lt\frac{3m+5}{\pi}\lt m+1$$ (This holds since $3+\frac{2}{m+1}\le 3+\frac{2}{15+1}\lt\pi\lt 3+\frac{3}{20}\le 3+\frac 3m$)
$g(66)=g(67)=g(68)=g(69)=43$ since $21\lt \frac{66}{\pi}\lt\frac{69}{\pi}\lt 22$
For $m=22,23,\cdots, 27$, we have $g(3m+4)=g(3m+5)=g(3m+6)=2m+1$ since $$m\lt\frac{3m+4}{\pi}\lt\frac{3m+6}{\pi}\lt m+1$$ (This holds since $3+\frac{3}{m+1}\le 3+\frac{3}{22+1}\lt\pi\lt 3+\frac{4}{27}\le 3+\frac 4m$)
$g(88)=g(89)=g(90)=g(91)=57$ since $28\lt \frac{88}{\pi}\lt\frac{91}{\pi}\lt 29$
For $m=29,30,31$, we have $g(3m+5)=g(3m+6)=g(3m+7)=2m+1$ since $$m\lt\frac{3m+5}{\pi}\lt\frac{3m+7}{\pi}\lt m+1$$ (This holds since $3+\frac{4}{m+1}\le 3+\frac{4}{29+1}\lt \pi\lt 3+\frac{5}{31}\le 3+\frac 5m$)
Therefore, we finally get
$$\begin{align}&\sum_{k=1}^{100}\text{(number of points of non-differentiability of $f(x)$)}
\\\\&=\sum_{k=1}^{100}g(k)
\\\\&=3\sum_{m=0}^{31}(2m+1)+(15+29+43+57)
\\\\&=3\times 2\times\frac{31\times 32}{2}+3\times 32+144
\\\\&=3216\end{align}$$
So, (4) is correct.