For convenience let's rewrite the integral as $$f(a)= \int_{0}^{\pi/2} \cos^{a-1}(x) \frac{\sin(ax)}{\sin x} \, \mathrm dx. $$
Then assuming that $a>0$, we have
$$ \begin{align} f(a) &= \int_{0}^{\pi/2} \cos^{a-1}(x) \frac{\sin(ax)}{\sin x} \, \mathrm dx \\ &\overset{(1)}{=} \int_{0}^{\infty} \frac{1}{(1+u^{2})^{a/2}} \, \frac{\sin \left(a \arctan u \right)}{u} \, \mathrm du \\ &\overset{(2)}{=} \int_{0}^{\infty}\frac{1}{(1+u^{2})^{a/2}} \frac{1}{u} \frac{(1+u^{2})^{a/2}}{\Gamma(a)} \int_{0}^{\infty} e^{-t} \sin(ut) t^{a-1} \, \mathrm dt \, \mathrm du \\ &= \frac{1}{\Gamma(a)} \int_{0}^{\infty} \frac{1}{u} \int_{0}^{\infty} e^{-t} \sin(ut) t^{a-1} \, \mathrm dt \, \mathrm du \\ &= \frac{1}{\Gamma(a)}\lim_{b \to \infty} \int_{0}^{b} \frac{1}{u} \int_{0}^{\infty} e^{-t} \sin(ut) t^{a-1} \, \mathrm dt \, \mathrm du \\ &\overset{(3)}{=} \frac{1}{\Gamma(a)} \lim_{b \to \infty} \int_{0}^{\infty} t^{a-1}e^{-t} \int_{0}^{b} \frac{\sin(tu)}{u} \, \mathrm du \, \mathrm dt \\ &=\frac{1}{\Gamma(a)} \lim_{b \to \infty} \int_{0}^{\infty} t^{a-1} e^{-t} \operatorname{Si}(bt)\, \mathrm dt \\ &= \frac{1}{\Gamma(a)} \int_{0}^{\infty}\lim_{b \to \infty}t^{a-1} e^{-t} \operatorname{Si}(bt) \, \mathrm dt \\ &\overset
{(4)}{=} \frac{1}{\Gamma(a)} \frac{\pi}{2} \int_{0}^{\infty} t^{a-1} e^{-t} \, \mathrm dt \\ &= \frac{\pi}{2}. \end{align}$$
$(1)$ Let $u = \tan(x)$.
$(2)$ Prove that $\int_{0}^{+\infty} u^{s-1} \cos (a u) \:e^{-b u}\:du=\frac{\Gamma(s)\cos\left(s\arctan \left(\frac{a}{b}\right)\right)}{(a^2+b^2)^{s/2}}$
$(3)$ Fubini's theorem
$(4)$ Since $|\operatorname{Si}(t)|$ is a bounded by a constant for all $t \in \mathbb{R}$, the dominated convergence theorem permits us to bring the limit inside the integral.
Old answer:
We can use contour integration to show that $f(a)=\frac{\pi}{2}$ for all $a >-1$.
Using the principal branch of the logarithm, we have
$$ \begin{align} f(a) &= \frac{1}{2} \int_{-\pi/2}^{\pi/2} \frac{\cos^{a}(x) \sin \left((a+1)x\right)}{\sin(x)} \, \mathrm dx \\ &= \frac{1}{2} \, \Im \, \operatorname{PV} \int_{-\pi/2}^{\pi/2} \frac{\cos^{a}(x)e^{i(a+1)x}}{\sin(x)} \, \mathrm dx \\ &= \frac{1}{2} \, \Im \, \operatorname{PV} \int_{-\pi/2}^{\pi/2} \frac{ \left(\frac{e^{ix}+e^{-ix}}{2} \right)^{a}e^{i(a+1)x}}{\frac{e^{ix}-e^{-ix}}{2i}} \, \mathrm dx \\ &= \frac{1}{2^{a}} \, \Im \, \operatorname{PV} \, \int_{C} \frac{\left(z+ \frac{1}{z} \right)^{a}z^{a+1}}{z- \frac{1}{z}} \frac{\mathrm dz}{z} \\ &= \frac{1}{2^{a}} \, \Im \, \operatorname{PV} \int_{C} \frac{z\left(z^{2}+ 1 \right)^{a}}{z^{2}-1} \, \mathrm dz, \end{align}$$
where $C$ is the right half of the unit circle indented at $z=1$, $z=i$ and $z=-i$.
The singularity at $z=1$ is a simple pole, while the singularities at $z=i$ and $z=-i$ are branch points.
The branch cuts for $(z^{2}+1)^{a}$ are on $(-i \infty, -i]$ and $[i, i \infty)$.
Closing the contour along the imaginary axis and letting the radii of the indentations go to zero, we get $$\operatorname{PV} \int_{C} \frac{z(z^{2}+1)^{a}}{z^{2}-1} \, \mathrm dz - i \pi \operatorname{Res} \left[\frac{z(z^{2}+1)^{a}}{z^{2}-1}, z=1\right] - \int_{-1}^{1} \frac{t(1-t^{2})^{a}}{1+t^{2}} \, \mathrm dt = 0. $$
(The contributions form the indentations at $z=i$ and $z=-i$ vanish since $\lim_{ z \to \pm i}(z \pm i)\frac{z(z^{2}+1)^{a}}{z^{2}-1} =0 $.)
Equating the imaginary parts on both sides of the above equation, we have $$ \Im \, \operatorname{PV} \int_{C} \frac{(z^{2}+1)^{a}}{z^{2}-1} \, \mathrm dz = \pi \operatorname{Res} \left[\frac{z(z^{2}+1)^{a}}{z^{2}-1}, z=1\right] = \pi \, 2^{a-1}.$$
Therefore, $$f(a) = \frac{1}{2^{a}} \left(\pi \, 2^{a-1} \right) = \frac{\pi}{2}.$$