We can use a slight extension of Ramanujan's master theorem. I will include a proof below.
Assume $f$ and $h$ have an expansion of the form,
$$f(x)=\sum_{m=1}^\infty h(mx),\quad h(x)=\sum_{k=0}^\infty\frac{\varphi(k)}{k!}(-x)^k,$$ then the Mellin
transform of $f(x)$ is given by, $$\int_0^{+\infty} x^{n-1}f(x)\
dx=\Gamma(n)\zeta(n)\varphi(-n).$$
In our case,
$$f(x)=\frac{1}{e^{nx}-1}=\frac{1}{e^{nx}}\frac{1}{1-e^{-nx}}=\frac{1}{e^{nx}}\sum_{k=0}^\infty e^{-knx}=\sum_{k=1}^\infty e^{-knx}$$
where,
$$h(kx)=e^{-knx}=\sum_{m=0}^\infty \frac{n^m}{m!}(-kx)^m$$
hence the Mellin transform,
$$\int_0^{+\infty} \frac{x^{s-1}}{e^{nx}-1}\ dx=\Gamma(s)\zeta(s)n^{-s}$$
take $s=n+1$,
$$\int_0^{+\infty} \frac{x^n}{e^{nx}-1}\ dx=\frac{\Gamma(n+1)}{n^{n+1}}\zeta(n+1)=\frac{\Gamma(n)}{n^n}\zeta(n+1).$$
Proof.
By Ramanujan's master theorem,
$$\int_0^{+\infty}x^{n-1} h(x)\ dx=\Gamma(n)\varphi(-n)$$
subbing $x\mapsto mx$,
$$m^{n}\int_0^{+\infty} x^{n-1}h(mx)\ dx=\Gamma(n)\varphi(-n)$$
rearranging and summing over $m\in\mathbb{N}$,
$$\int_0^{+\infty} x^{n-1}\sum_{m=1}^\infty h(mx)\ dx=\sum_{m=1}^\infty m^{-n}\Gamma(n)\varphi(-n)=\Gamma(n)\zeta(n)\varphi(-n)$$
hence, $$\int_0^{+\infty} x^{n-1}f(x)\ dx=\Gamma(n)\zeta(n)\varphi(-n).$$