Suppose $f_n(x)$ ($n=1,2,\dots$) are continuous on $[a, b]$, $f_n(x)\rightarrow f(x)$ pointwisely, and $f(x)$ is continous on $[a, b]$. Define $f_0(x)=f(x)$. We know continuous on compact set implies uniformly continuous, hence $f_n(x)$ ($n=\color{red}0, 1,2,\dots$) are uniformly continuous on $[a,b]$.
Then for any fixed $\epsilon>0$, we can find $\delta_0>0, s. t,~|x-y|<\delta_0\Longrightarrow|f(x)-f(y)|<\epsilon$. Similarly, we can find $\delta_n>0, s. t,~|x-y|<\delta_n\Longrightarrow|f_n(x)-f_n(y)|<\epsilon$.
My question is,
If we define the set $S=\{\delta_k|k=0,1,2\dots\}$, how can we say about $\inf S$? For exmaple, we can always make $\inf S=0$,
we can find $\delta'>0, s. t,~|x-y|<\delta'\Longrightarrow|f_1(x)-f_1(y)|<\epsilon$. Set $\delta_1=\min(\delta', \frac12\delta_{0})$
we can find $\delta''>0, s. t,~|x-y|<\delta''\Longrightarrow|f_2(x)-f_2(y)|<\epsilon$. Set $\delta_2=\min(\delta'', \frac12\delta_{1})$
Keep going, we can guarantee $\delta_n\le\frac12\delta_{n-1}$, hence $\inf S=0$. But is it possible to construct $\delta_n$ such that $\inf S>0$? If this is possible (or with some additional conditions), then it means we can find a universal $\delta_U$, such that whenever $|x-y|<\delta_U\Longrightarrow |f_n(x)-f_n(y)|<\epsilon, \forall n=\color{red}0,1,2\dots$