A proof following user51547 and Maestro13's nice idea.
WLOG, assume that $x, y, z\in [0, 2\pi]$.
Clearly, $\cos x, \cos y, \cos z, \sin x, \sin y, \sin z > 0$.
Thus, $x, y, z \in (0, \pi/2)$.
We claim that $x + y + z > \pi/2$.
Indeed, if $x + y + z \le \pi/2$,
we have $x + y \le \pi/3$
and $\sin x + \sin y = 2\sin\frac{x + y}{2}\cos \frac{x - y}{2}
\le 1$ which contradicts $\sin x + \sin y + \sin z = 2$.
Also, we can prove that $x + y + z \le \pi - \arcsin\frac45$.
See this question.
Now let us express $\tan x + \tan y + \tan z$ in terms of $abc$.
Let $a = \cos x + \mathrm{i}\sin x,
b = \cos y + \mathrm{i}\sin y$, and $c = \cos z + \mathrm{i} \sin z$.
We have
$$a + b + c = \frac{11}{5} + 2\mathrm{i},\quad \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{11}{5} - 2\mathrm{i}. \tag{1}$$
Let $abc = u + \mathrm{i}v$. We have
$$u = \cos(x + y + z), \quad v = \sin(x + y + z), \quad \frac{1}{abc} = u - \mathrm{i}v. \tag{2}$$
Using $\frac{a - 1/a}{a + 1/a} = \mathrm{i} \tan x$ etc., we have
\begin{align*}
&\mathrm{i}(\tan x + \tan y + \tan z)\\[6pt]
={}& \frac{a - 1/a}{a + 1/a}
+ \frac{b - 1/b}{b + 1/b} + \frac{c - 1/c}{c + 1/c}\\[6pt]
={}& \frac{3(abc - \frac{1}{abc}) + (\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c}) - (\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab})}{(abc + \frac{1}{abc}) + (\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c}) + (\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab})}\\[6pt]
={}& \frac{6v\mathrm{i} + [(\frac{11}{5} - 2\mathrm{i})^2(u + \mathrm{i} v) - 2(\frac{11}{5} + 2\mathrm{i})] - [(\frac{11}{5} + 2\mathrm{i})^2(u - \mathrm{i} v) - 2(\frac{11}{5} - 2\mathrm{i})]}{2u + [(\frac{11}{5} - 2\mathrm{i})^2(u + \mathrm{i} v) - 2(\frac{11}{5} + 2\mathrm{i})] + [(\frac{11}{5} + 2\mathrm{i})^2(u - \mathrm{i} v) - 2(\frac{11}{5} - 2\mathrm{i})]}\\[6pt]
={}& \mathrm{i}\cdot \frac{-110u + 48v - 50}{23u + 110v - 55} \tag{3}
\end{align*}
where we use (1), (2), and
\begin{align*}
\frac{(a + b + c)^2}{abc}
&= \frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} + 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right), \\[6pt]
\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2abc
&= \frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} + 2(a + b + c).
\end{align*}
From (3), we have
$$\tan x + \tan y + \tan z = \frac{-110u + 48v - 50}{23u + 110v - 55} = \frac{-110\cos w + 48\sin w - 50}{23\cos w + 110\sin w - 55}$$
where $w := x + y + z \in (\pi/2, \pi - \arcsin\frac45]$.
It suffices to prove that, for all $w\in (\pi/2, \pi - \arcsin\frac45]$,
$$\frac{-110\cos w + 48\sin w - 50}{23\cos w + 110\sin w - 55} \le \frac{17}{6}.$$
Let
$$f(w) := \frac{-110\cos w + 48\sin w - 50}{23\cos w + 110\sin w - 55}.$$
We have
$$f'(w) = \frac{13204 - 7200\sin w + 2860\cos w}{(23\cos w + 110\sin w - 55)^2} > 0$$
where we use
$13204 - \sqrt{7200^2 + 2860^2} > 0$.
Also, we have $f(\pi - \arcsin\frac45) = \frac{17}{6}$. Thus, we have $f(w) \le \frac{17}{6}$ for all $w \in (\pi/2, \pi - \arcsin\frac45]$.
We are done.