Here is a general method to construct a Dobble variant deck where any $n$ cards have a unique symbol in common. This generalizes the method used in Jean Marie's answer.
Let $F$ be a finite field. Say that $|F|=q$, so $q$ is a prime power.
Let $V=F^{n+1}$.
Find a list, $C$, of vectors in $V$, such that any $n$ distinct vectors in $C$ are linearly independent. I call this property "$n$-wise linearly independent." $C$ will be the set of cards.
- Finding a list of $m$ vectors in $F^{n+1}$ which are $n$-wise independent is equivalent to finding a $[m,m-n-1,n+1]_q$ code. Specifically, given such a code, its parity check matrix is a $(n+1)\times m$ matrix with elements in $F$, and the columns of this matrix will be $n$-wise independent. I learned this from this MO question and answer.
There is no general method to determine the largest $m$ such that a $[m,m-n-1,n+1]_q$ exists, as far as I know. In practice, you need to consult a database of known codes, such as http://www.codetables.de.
Let $S$ be the set of vectors in $V$ whose leftmost nonzero coordinate is equal to $1$. There are $q^n + q^{n-1} + \dots + q + 1$ vectors in $S$. $S$ will be the set of symbols.
For each $c\in C$, and each $s\in S$, symbol $s$ appears on card $c$ if and only if $c\cdot s=0$, where $\cdot$ is the dot product performed with finite field arithmetic.
Given any $n$ cards, with vectors $c_1,\dots,c_n$, we know by assumption that the list of vectors in linearly independent. Therefore, the system of $n$ equations, defined by $c_i\cdot v=0$ for each $i\in \{1,\dots,n\}$, has a one-dimensional subspace of solutions. There is a unique representative in this subspace whose first nonzero coordinate is $1$, corresponding to the unique symbol shared by all cards.
Example 1
Let $F=\mathbb Z/2\mathbb Z$, and let $n=3$. The columns of this $4\times 8$ matrix are three-wise linearly independent. The eight columns are the eight vectors in $(\mathbb Z/2\mathbb Z)^4$ with an odd number of ones.
$$
\begin{bmatrix}
1&0&0&0&0&1&1&1\\
0&1&0&0&1&0&0&0\\
0&0&1&0&1&1&0&1\\
0&0&0&1&1&1&1&0
\end{bmatrix}
$$
Following the method described above, here is the resulting Dobble card set produced. Each binary vector is interpreted as a binary integer between $1$ and $14$ for the representation below. There are $8$ cards, with $7$ symbols per card, using $14$ symbols total. Since $n=3$, any $3$ cards have a unique symbol in common.
Card 1: 2 4 6 8 10 12 14
Card 2: 1 4 5 8 9 12 13
Card 4: 1 2 3 8 9 10 11
Card 7: 3 5 6 8 11 13 14
Card 8: 1 2 3 4 5 6 7
Card 11: 3 4 7 9 10 13 14
Card 13: 2 5 7 9 11 12 14
Card 14: 1 6 7 10 11 12 13
Example 2
Now, let us construct a set of cards where any $4$ have a unique intersection. We will $F = \mathbb Z/3\mathbb Z$ as our field, so we need a collection of vectors in $F^5$ which are $4$-wise linearly independent. It turns out that the columns of the parity check matrix for the $[11,6,5]_3$ ternary Golay code serve this purpose. Initially, this produces an $11$ card deck with $40$ symbols per card, spanning a total of $3^4+3^3+3^2+3^1+1=121$ symbols. However, of these symbols, $55$ symbols appear on $3$ or fewer cards. These symbols can be safely deleted from the cards they appear on while preserving the $4$-intersecting property.
Here is the final deck design. There are $11$ cards, with $30$ symbols per card, spanning $66$ symbols total. This would make for a very challenging game!
Card # 1
2, 4, 6, 10, 12, 17, 18, 25, 28, 30, 35, 36, 47, 54, 59
69, 73, 75, 83, 85, 87, 91, 93, 99, 104, 106, 110, 112, 114, 119
Card # 2
3, 4, 5, 9, 10, 11, 24, 25, 33, 35, 40, 45, 47, 54, 55
56, 69, 75, 84, 85, 86, 90, 91, 92, 105, 106, 114, 115, 116, 120
Card # 3
1, 4, 7, 11, 17, 18, 21, 24, 27, 30, 33, 40, 47, 56, 59
63, 69, 73, 83, 86, 89, 90, 93, 96, 100, 106, 109, 112, 115, 117
Card # 4
2, 3, 7, 11, 12, 20, 21, 25, 27, 35, 36, 40, 45, 55, 59
60, 69, 73, 82, 86, 87, 91, 96, 100, 104, 105, 108, 112, 116, 118
Card # 5
1, 5, 6, 9, 17, 20, 21, 25, 28, 33, 36, 40, 47, 55, 59
60, 63, 75, 81, 85, 89, 92, 93, 100, 104, 105, 110, 111, 115, 118
Card # 6
0, 5, 7, 10, 12, 17, 20, 24, 28, 30, 35, 40, 45, 56, 60
63, 73, 75, 82, 84, 89, 92, 96, 99, 104, 106, 109, 111, 116, 119
Card # 7
81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 96, 99, 100
104, 105, 106, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120
Card # 8
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 17, 18, 20
21, 24, 25, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120
Card # 9
0, 1, 2, 3, 4, 5, 6, 7, 27, 28, 30, 33, 35, 54, 55
56, 59, 60, 81, 82, 83, 84, 85, 86, 87, 89, 117, 118, 119, 120
Card # 10
0, 1, 2, 9, 10, 11, 18, 20, 27, 28, 36, 45, 47, 54, 55
56, 63, 73, 81, 82, 83, 90, 91, 92, 99, 100, 108, 109, 110, 120
Card # 11
0, 3, 6, 9, 12, 18, 21, 24, 27, 30, 33, 36, 45, 54, 60
63, 69, 75, 81, 84, 87, 90, 93, 96, 99, 105, 108, 111, 114, 117
Example 3
This example is again for $n=3$ cards at a time. There are $26$ cards, with $30$ symbols per card, spanning $130$ symbols, where any three cards have a unique symbol in common. Each symbol is an integer between $0$ and $155$, but there are $26$ numbers in that range which do not appear on any cards. Every symbol which is used appears $6$ cards.
The field I used is $\mathbb Z/5\mathbb Z$. The $3$-wise linearly independent set of vectors comes from the columns of the parity-check matrix for the $[26,22,4]_5$ code described at http://www.codetables.de/BKLC/BKLC.php?q=5&n=26&k=22.
Card # 1 :
3, 6, 14, 17, 20, 25, 33, 36, 44, 47, 52, 55, 63, 66, 79
82, 85, 93, 96, 101, 109, 112, 115, 123, 127, 130, 138, 141, 149, 153
Card # 2 :
5, 6, 7, 8, 9, 35, 36, 37, 38, 65, 66, 67, 68, 69, 95
96, 97, 98, 99, 100, 101, 102, 103, 104, 130, 131, 132, 133, 134, 155
Card # 3 :
0, 6, 12, 18, 24, 26, 32, 38, 44, 45, 52, 58, 65, 71, 78
84, 85, 91, 97, 104, 105, 111, 117, 123, 126, 132, 138, 144, 145, 151
Card # 4 :
2, 7, 12, 17, 22, 25, 30, 35, 40, 45, 53, 58, 63, 68, 73
76, 86, 91, 96, 104, 109, 114, 119, 124, 128, 133, 138, 143, 148, 150
Card # 5 :
3, 7, 11, 15, 24, 29, 33, 37, 45, 50, 59, 63, 67, 71, 76
80, 89, 93, 97, 102, 106, 110, 119, 123, 126, 130, 139, 143, 147, 154
Card # 6 :
1, 6, 11, 16, 21, 27, 32, 37, 42, 47, 53, 58, 63, 68, 73
79, 84, 89, 99, 100, 105, 110, 115, 120, 126, 131, 136, 141, 146, 150
Card # 7 :
3, 8, 13, 18, 23, 27, 32, 37, 42, 47, 51, 61, 66, 71, 75
80, 85, 90, 95, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 150
Card # 8 :
3, 9, 10, 16, 22, 26, 32, 38, 44, 45, 54, 55, 61, 67, 73
77, 89, 90, 96, 100, 106, 112, 118, 124, 128, 134, 135, 141, 147, 151
Card # 9 :
2, 8, 14, 15, 21, 29, 30, 36, 42, 48, 51, 63, 69, 70, 78
84, 85, 91, 97, 100, 106, 112, 118, 124, 127, 133, 139, 140, 146, 151
Card # 10 :
2, 5, 13, 16, 24, 26, 34, 37, 40, 48, 50, 58, 61, 69, 79
82, 85, 93, 96, 103, 106, 114, 117, 120, 129, 132, 135, 143, 146, 153
Card # 11 :
10, 11, 12, 13, 14, 30, 31, 32, 33, 34, 50, 51, 52, 53, 54
95, 96, 97, 98, 99, 115, 117, 118, 119, 145, 146, 147, 148, 149, 155
Card # 12 :
0, 9, 13, 17, 21, 27, 31, 35, 44, 48, 54, 58, 62, 66, 70
76, 80, 89, 93, 97, 103, 111, 115, 124, 127, 131, 135, 144, 148, 154
Card # 13 :
1, 5, 14, 18, 22, 25, 34, 38, 42, 54, 58, 62, 66, 70, 78
82, 86, 90, 99, 102, 106, 110, 119, 123, 129, 133, 137, 141, 145, 154
Card # 14 :
1, 8, 10, 17, 24, 29, 31, 38, 40, 47, 52, 59, 61, 68, 70
75, 82, 89, 91, 98, 103, 105, 112, 119, 128, 130, 137, 144, 146, 152
Card # 15 :
4, 6, 13, 15, 22, 26, 33, 35, 42, 53, 55, 62, 69, 71, 75
82, 89, 91, 98, 102, 109, 111, 118, 120, 127, 134, 136, 143, 145, 152
Card # 16 :
4, 5, 11, 17, 23, 29, 30, 36, 42, 48, 54, 55, 61, 67, 73
79, 80, 86, 98, 104, 105, 111, 117, 123, 125, 131, 137, 143, 149, 151
Card # 17 :
2, 9, 11, 18, 20, 27, 34, 36, 45, 52, 59, 61, 68, 70, 77
84, 86, 93, 95, 102, 109, 111, 118, 120, 125, 132, 139, 141, 148, 152
Card # 18 :
4, 8, 12, 16, 20, 27, 31, 35, 44, 48, 50, 59, 63, 67, 71
78, 82, 86, 90, 99, 101, 105, 114, 118, 128, 132, 136, 140, 149, 154
Card # 19 :
1, 9, 12, 15, 23, 26, 34, 37, 40, 48, 51, 59, 62, 65, 73
76, 84, 90, 98, 101, 109, 112, 115, 123, 125, 133, 136, 144, 147, 153
Card # 20 :
20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 65, 66, 67, 68, 69
75, 76, 77, 78, 79, 110, 111, 112, 114, 135, 136, 137, 138, 139, 155
Card # 21 :
0, 7, 14, 16, 23, 29, 31, 38, 40, 47, 53, 55, 62, 69, 71
77, 84, 86, 93, 95, 101, 110, 117, 124, 129, 131, 138, 140, 147, 152
Card # 22 :
4, 7, 10, 18, 21, 25, 33, 36, 44, 47, 51, 59, 62, 65, 73
77, 80, 91, 99, 103, 106, 114, 117, 120, 126, 134, 137, 140, 148, 153
Card # 23 :
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139
140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155
Card # 24 :
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
15, 16, 17, 18, 20, 21, 22, 23, 24, 150, 151, 152, 153, 154, 155
Card # 25 :
0, 1, 2, 3, 4, 25, 26, 27, 29, 50, 51, 52, 53, 54, 75
76, 77, 78, 79, 100, 101, 102, 103, 104, 125, 126, 127, 128, 129, 155
Card # 26 :
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 70, 75
80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150
Example 4
This example is again for $n=4$ cards at a time. There are $16$ cards, with $173$ symbols per card, spanning $636$ symbols, where any four cards have a unique symbol in common. This game would be impractical for humans to play.
The field I used is $\mathbb Z/7\mathbb Z$. The $4$-wise linearly independent set of vectors comes from the columns of the parity-check matrix for the $[18,13,5]_7$ code described at https://www.codetables.de/BKLC/BKLC.php?q=7&n=18&k=13 (this has $18$ columns, which suffices to make an $18$ card deck, but I deleted two columns, reducing this to a $16$ card deck while reducing the number of symbols).
Card # 1
1, 7, 11, 17, 20, 24, 30, 32, 34, 41, 48, 51, 55, 57, 60
62, 65, 69, 74, 78, 84, 88, 89, 100, 105, 106, 113, 115, 117, 118
125, 128, 132, 137, 139, 142, 145, 147, 149, 151, 154, 158, 159, 163, 164
166, 169, 175, 176, 183, 185, 195, 197, 199, 203, 214, 218, 224, 226, 229
230, 233, 236, 237, 241, 243, 245, 249, 250, 254, 258, 260, 262, 268, 272
275, 278, 279, 280, 281, 283, 288, 293, 299, 306, 311, 315, 321, 322, 323
327, 328, 330, 338, 339, 343, 346, 348, 353, 358, 361, 364, 373, 376, 381
387, 395, 398, 401, 404, 406, 407, 408, 409, 412, 419, 425, 429, 433, 434
435, 437, 442, 443, 445, 446, 449, 451, 452, 454, 457, 458, 462, 468, 472
477, 480, 485, 490, 497, 499, 506, 508, 514, 516, 518, 533, 534, 538, 541
545, 547, 549, 551, 554, 563, 566, 571, 573, 576, 577, 579, 581, 583, 589
591, 597, 610, 614, 619, 625, 628, 635
Card # 2
3, 7, 16, 21, 26, 31, 35, 42, 47, 52, 53, 56, 60, 64, 66
70, 73, 74, 80, 82, 85, 88, 91, 96, 104, 110, 114, 116, 118, 126
130, 132, 134, 141, 144, 147, 150, 153, 155, 156, 159, 165, 171, 172, 173
176, 179, 186, 188, 193, 196, 203, 207, 211, 213, 215, 217, 219, 220, 226
227, 232, 235, 236, 242, 244, 248, 253, 258, 261, 264, 265, 268, 270, 271
272, 277, 281, 284, 285, 288, 289, 290, 293, 295, 298, 303, 305, 309, 312
313, 315, 318, 322, 326, 331, 335, 339, 342, 343, 347, 348, 350, 359, 362
366, 369, 376, 379, 383, 384, 386, 387, 388, 389, 393, 394, 403, 404, 405
418, 420, 424, 432, 439, 441, 452, 458, 459, 460, 461, 463, 466, 472, 479
483, 484, 491, 503, 509, 512, 514, 522, 524, 527, 532, 535, 537, 538, 542
543, 546, 550, 551, 555, 558, 561, 562, 564, 568, 569, 581, 587, 595, 599
601, 603, 608, 611, 618, 625, 629, 631
Card # 3
2, 7, 10, 13, 15, 23, 29, 33, 34, 40, 42, 53, 58, 61, 62
67, 69, 71, 77, 79, 85, 87, 90, 99, 102, 103, 108, 111, 117, 120
124, 131, 133, 134, 139, 148, 150, 154, 157, 159, 162, 168, 171, 173, 177
178, 181, 183, 185, 186, 190, 193, 198, 199, 205, 218, 222, 225, 226, 231
232, 234, 237, 239, 240, 244, 246, 248, 251, 256, 259, 262, 267, 269, 270
273, 275, 281, 283, 285, 286, 294, 295, 298, 301, 302, 309, 311, 316, 319
324, 327, 328, 329, 333, 335, 337, 343, 345, 349, 351, 353, 354, 358, 365
366, 371, 372, 373, 380, 389, 391, 396, 399, 400, 408, 411, 414, 416, 419
424, 427, 430, 433, 435, 436, 438, 442, 448, 451, 454, 456, 458, 465, 470
479, 481, 485, 493, 495, 498, 504, 505, 507, 514, 518, 520, 524, 528, 531
535, 539, 541, 544, 556, 557, 562, 566, 571, 575, 580, 582, 584, 588, 591
599, 602, 605, 609, 610, 618, 622, 634
Card # 4
6, 8, 12, 23, 26, 28, 33, 35, 43, 45, 47, 50, 54, 67, 72
75, 77, 80, 81, 83, 87, 91, 93, 95, 97, 106, 113, 115, 117, 118
123, 130, 135, 140, 146, 150, 152, 159, 163, 164, 167, 171, 173, 184, 186
187, 189, 192, 193, 196, 198, 200, 204, 206, 210, 212, 217, 221, 223, 231
233, 236, 237, 239, 242, 246, 249, 250, 254, 258, 260, 262, 265, 269, 273
276, 277, 282, 287, 290, 291, 296, 305, 308, 310, 320, 326, 331, 333, 338
339, 340, 342, 344, 347, 349, 355, 357, 360, 367, 369, 375, 377, 382, 386
390, 393, 397, 399, 402, 404, 406, 407, 408, 409, 411, 413, 421, 423, 426
428, 430, 431, 432, 434, 435, 437, 441, 448, 450, 455, 461, 467, 471, 476
484, 493, 496, 500, 503, 505, 510, 517, 519, 521, 523, 526, 527, 531, 534
538, 541, 545, 547, 549, 559, 560, 565, 568, 574, 580, 585, 587, 592, 593
600, 604, 607, 616, 618, 623, 627, 635
Card # 5
4, 5, 15, 20, 26, 28, 31, 32, 37, 40, 50, 56, 61, 65, 68
75, 78, 79, 82, 86, 88, 92, 95, 99, 101, 109, 110, 117, 119, 121
122, 128, 134, 140, 144, 151, 157, 161, 167, 170, 175, 177, 179, 180, 183
188, 189, 193, 198, 202, 203, 208, 214, 216, 219, 220, 221, 228, 234, 240
241, 242, 244, 247, 254, 256, 257, 261, 264, 269, 275, 276, 282, 286, 290
291, 293, 296, 297, 298, 299, 300, 303, 306, 307, 310, 314, 316, 317, 327
330, 333, 339, 340, 341, 345, 350, 351, 352, 358, 362, 367, 368, 372, 374
376, 377, 378, 380, 381, 386, 388, 391, 395, 403, 406, 410, 414, 417, 420
421, 425, 429, 432, 434, 436, 440, 443, 446, 448, 457, 458, 464, 471, 479
486, 492, 497, 501, 502, 505, 508, 509, 513, 515, 516, 520, 523, 532, 537
539, 545, 548, 554, 557, 561, 565, 570, 572, 575, 578, 581, 585, 587, 591
596, 605, 607, 611, 615, 619, 621, 632
Card # 6
3, 6, 14, 15, 22, 24, 28, 36, 41, 42, 44, 46, 55, 56, 63
67, 69, 73, 76, 81, 86, 90, 92, 97, 100, 104, 111, 115, 116, 119
127, 128, 130, 133, 136, 143, 150, 151, 161, 166, 170, 172, 177, 178, 179
184, 185, 189, 190, 192, 194, 199, 208, 210, 211, 214, 217, 221, 222, 224
227, 229, 233, 238, 239, 243, 244, 245, 249, 251, 253, 257, 263, 264, 266
267, 274, 275, 277, 279, 284, 287, 292, 295, 296, 302, 308, 314, 315, 322
325, 329, 334, 336, 339, 341, 343, 344, 348, 351, 352, 355, 359, 363, 364
367, 371, 372, 375, 379, 382, 384, 389, 393, 395, 396, 400, 403, 405, 408
412, 415, 420, 423, 431, 433, 437, 444, 445, 448, 456, 457, 463, 464, 473
476, 483, 487, 490, 495, 498, 503, 508, 511, 517, 518, 525, 530, 532, 536
539, 540, 543, 549, 553, 558, 563, 565, 567, 569, 572, 576, 580, 590, 593
596, 599, 606, 609, 615, 625, 627, 633
Card # 7
4, 10, 14, 16, 19, 29, 37, 44, 48, 51, 55, 57, 60, 62, 65
72, 75, 77, 80, 81, 83, 90, 94, 96, 101, 109, 112, 116, 120, 127
129, 134, 138, 142, 145, 147, 149, 151, 154, 158, 161, 162, 170, 174, 177
179, 181, 186, 187, 189, 196, 198, 200, 204, 206, 210, 212, 213, 216, 220
222, 227, 228, 232, 241, 243, 247, 255, 259, 261, 263, 267, 271, 273, 276
277, 279, 280, 281, 286, 289, 294, 297, 301, 302, 304, 307, 312, 321, 322
323, 327, 332, 334, 337, 340, 342, 344, 350, 354, 356, 359, 365, 374, 385
388, 394, 404, 406, 407, 408, 409, 415, 417, 422, 424, 426, 428, 430, 431
432, 436, 439, 444, 445, 446, 449, 451, 452, 453, 456, 463, 469, 473, 478
481, 486, 491, 501, 504, 511, 512, 517, 519, 521, 523, 526, 527, 531, 540
544, 546, 548, 552, 557, 564, 567, 571, 573, 576, 577, 579, 581, 583, 594
599, 603, 613, 615, 617, 622, 626, 635
Card # 8
1, 5, 9, 14, 23, 27, 29, 32, 36, 45, 47, 52, 53, 56, 60
64, 66, 72, 76, 79, 84, 89, 93, 101, 103, 107, 108, 112, 115, 121
122, 133, 135, 137, 138, 143, 149, 152, 157, 161, 164, 166, 168, 174, 175
178, 180, 182, 186, 188, 191, 204, 208, 209, 213, 215, 217, 219, 222, 223
230, 231, 234, 238, 241, 245, 251, 254, 255, 266, 269, 274, 276, 278, 279
282, 284, 285, 288, 289, 290, 291, 292, 296, 301, 303, 305, 309, 312, 313
315, 318, 321, 324, 325, 330, 332, 337, 338, 344, 351, 357, 361, 363, 365
368, 370, 378, 380, 382, 385, 387, 388, 389, 392, 395, 402, 409, 417, 419
423, 426, 433, 435, 442, 450, 451, 454, 458, 459, 460, 461, 463, 469, 470
475, 480, 487, 492, 496, 500, 507, 511, 515, 516, 519, 525, 528, 535, 537
538, 542, 543, 546, 550, 557, 560, 563, 578, 580, 583, 586, 589, 594, 596
600, 602, 606, 607, 610, 617, 624, 631
Card # 9
4, 8, 13, 17, 22, 30, 38, 40, 43, 44, 46, 50, 59, 62, 70
73, 74, 80, 82, 85, 87, 92, 94, 98, 105, 107, 108, 112, 115, 121
125, 129, 131, 141, 144, 147, 150, 153, 155, 156, 160, 167, 169, 177, 178
180, 182, 185, 187, 190, 195, 202, 205, 206, 218, 221, 225, 230, 231, 232
235, 236, 240, 243, 247, 252, 256, 260, 263, 264, 265, 268, 270, 271, 274
276, 278, 280, 283, 287, 294, 300, 304, 311, 314, 320, 321, 324, 325, 333
334, 336, 346, 347, 348, 350, 354, 355, 357, 361, 363, 365, 368, 370, 374
375, 383, 384, 386, 390, 391, 397, 399, 407, 413, 416, 422, 425, 429, 430
434, 438, 443, 446, 447, 453, 457, 458, 459, 460, 461, 463, 465, 471, 478
489, 490, 494, 504, 506, 510, 513, 517, 520, 529, 533, 536, 541, 548, 551
555, 558, 561, 562, 564, 568, 570, 574, 579, 582, 586, 589, 594, 596, 600
602, 609, 612, 616, 619, 620, 626, 631
Card # 10
6, 9, 13, 16, 20, 25, 29, 31, 39, 41, 43, 46, 54, 57, 61
64, 68, 71, 74, 76, 83, 89, 95, 98, 102, 104, 106, 111, 114, 121
126, 129, 135, 136, 139, 143, 146, 148, 155, 158, 160, 164, 167, 168, 172
174, 176, 181, 182, 185, 188, 191, 192, 195, 198, 209, 211, 215, 216, 220
224, 228, 231, 235, 237, 238, 239, 241, 246, 247, 248, 250, 252, 255, 266
270, 278, 281, 285, 287, 291, 295, 298, 305, 314, 319, 326, 328, 331, 332
339, 341, 342, 346, 347, 351, 352, 354, 356, 360, 362, 364, 370, 373, 377
379, 381, 382, 383, 387, 391, 398, 400, 401, 407, 410, 413, 415, 418, 419
427, 429, 431, 438, 440, 444, 445, 447, 450, 455, 456, 462, 463, 467, 472
478, 482, 488, 492, 495, 499, 502, 507, 510, 512, 519, 522, 530, 533, 536
544, 547, 550, 552, 556, 559, 561, 563, 569, 577, 582, 585, 586, 591, 593
595, 598, 612, 615, 618, 624, 628, 630
Card # 11
7, 8, 14, 18, 25, 33, 38, 41, 48, 49, 54, 58, 59, 63, 66
68, 75, 78, 79, 82, 86, 93, 96, 102, 105, 107, 113, 114, 120, 124
129, 130, 137, 145, 148, 152, 156, 160, 162, 163, 165, 166, 171, 176, 179
180, 183, 187, 192, 194, 197, 201, 205, 207, 209, 212, 215, 218, 225, 229
231, 232, 238, 240, 241, 242, 250, 253, 259, 265, 272, 280, 289, 296, 297
298, 299, 300, 303, 306, 307, 310, 314, 316, 317, 323, 325, 328, 334, 336
337, 342, 348, 349, 355, 356, 361, 369, 371, 372, 374, 376, 377, 378, 383
385, 389, 392, 394, 396, 397, 398, 400, 402, 408, 411, 412, 418, 422, 426
427, 434, 436, 440, 441, 442, 444, 447, 452, 455, 460, 462, 468, 470, 476
482, 489, 491, 501, 502, 505, 508, 509, 513, 515, 521, 524, 525, 533, 538
544, 555, 559, 566, 567, 569, 573, 574, 584, 588, 590, 592, 594, 597, 598
601, 604, 609, 613, 614, 624, 629, 632
Card # 12
2, 11, 12, 16, 22, 27, 30, 39, 42, 45, 48, 49, 54, 58, 59
63, 66, 70, 71, 81, 84, 91, 94, 100, 103, 109, 110, 117, 119, 121
123, 131, 132, 136, 138, 146, 153, 154, 160, 162, 163, 165, 169, 172, 175
177, 181, 184, 186, 191, 194, 197, 201, 205, 207, 209, 212, 214, 216, 219
223, 226, 227, 230, 235, 239, 251, 252, 258, 266, 271, 274, 279, 283, 284
292, 296, 297, 298, 299, 300, 304, 308, 313, 319, 324, 326, 329, 332, 335
338, 340, 341, 345, 348, 349, 353, 357, 364, 366, 373, 375, 380, 381, 386
387, 390, 392, 394, 396, 397, 398, 399, 401, 405, 407, 410, 414, 417, 420
421, 425, 428, 437, 438, 439, 441, 442, 444, 449, 450, 453, 459, 466, 473
474, 480, 488, 493, 494, 503, 506, 507, 518, 522, 526, 529, 534, 536, 542
552, 553, 560, 562, 570, 572, 575, 578, 581, 585, 588, 590, 592, 594, 597
598, 601, 606, 608, 616, 622, 628, 632
Card # 13
18, 19, 20, 21, 22, 23, 34, 35, 36, 37, 38, 39, 49, 50, 51
52, 83, 84, 85, 86, 96, 97, 98, 99, 110, 111, 112, 113, 122, 123
124, 125, 126, 127, 140, 141, 142, 143, 164, 165, 168, 169, 170, 173, 174
182, 183, 184, 187, 188, 190, 191, 199, 200, 201, 202, 213, 214, 223, 224
225, 228, 229, 233, 234, 235, 242, 243, 245, 246, 257, 258, 259, 267, 268
272, 273, 281, 282, 286, 287, 288, 292, 293, 294, 300, 301, 317, 318, 319
320, 323, 324, 329, 330, 331, 335, 336, 344, 345, 346, 349, 350, 352, 353
359, 360, 361, 378, 379, 384, 385, 389, 390, 391, 392, 393, 401, 402, 403
405, 406, 416, 417, 418, 427, 428, 439, 440, 443, 444, 447, 448, 449, 453
454, 455, 461, 462, 474, 475, 476, 477, 478, 479, 498, 499, 500, 501, 527
528, 529, 530, 540, 541, 542, 553, 554, 555, 556, 583, 584, 585, 595, 596
597, 620, 621, 622, 623, 624, 625, 636
Card # 14
464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478
479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493
494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508
509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523
524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538
539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553
554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568
569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583
584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613
614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628
629, 630, 631, 632, 633, 634, 635, 636
Card # 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135
136, 137, 138, 139, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613
614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628
629, 630, 631, 632, 633, 634, 635, 636
Card # 16
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 140, 141, 142
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
158, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207
208, 209, 210, 211, 212, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257
258, 259, 260, 261, 262, 263, 302, 303, 304, 305, 306, 307, 308, 309, 310
311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 356, 357, 358, 359, 360
361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 410, 411, 412, 413
414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 464, 465, 466
467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481
482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496
497, 630, 631, 632, 633, 634, 635, 636