12

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{align} K&=\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx}\\&= - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \\&=- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\&\quad\quad+ 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} \\&= - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{align}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

The closed form for $K$ is: $$K=\frac{4\pi}{3}\cdot G-\frac{35}{36}\cdot\zeta(3)-\frac{5\pi}{36\sqrt{3}}(\psi'(1/3)-\psi'(2/3))$$

FShrike
  • 46,840
  • 3
  • 35
  • 94
OnTheWay
  • 3,523
  • Similar question https://math.stackexchange.com/questions/4405138/how-to-prove-int-01-frac-arctan2x-ln-left-fracx1-x2-rightx?rq=1 – Barackouda Jun 12 '23 at 10:49
  • @Zima In fact, there is closed form for this integral. – OnTheWay Jun 12 '23 at 13:09
  • @ErikSatie Thank you for your suggestion. But these 2 problem are different too much. – OnTheWay Jun 12 '23 at 13:10
  • 2
    @Zima $$\frac{4 \pi G}{3}-\frac{35 \zeta (3)}{36}-\frac{5 \pi \left(\psi ^{(1)}\left(\frac{1}{3}\right)-\psi ^{(1)}\left(\frac{2}{3}\right)\right)}{36 \sqrt{3}}$$. Thank you. – OnTheWay Jun 12 '23 at 13:19
  • The integral is equivalent to $$\frac{\pi^2}{4}\log2+\frac74 \zeta(3)-2\int_0^{\frac{\pi}{2}}t \log(\sqrt{4\tan^2 t+1}-1) dt$$ – Zima Jun 12 '23 at 14:07
  • Did you learn this closed form from a CAS? – FShrike Jun 12 '23 at 14:21
  • @FShrike This problem came from my friend, but i could only solve at the last integral in my post. After stucking then i ask him the closed form, and he gave me without a hint. Thank you for your comment. – OnTheWay Jun 12 '23 at 14:29
  • @user170231 No, the last line is correct (numerically too, if you don't believe me) – FShrike Jun 12 '23 at 18:17
  • @FShrike You're right, I was mistaken! – user170231 Jun 12 '23 at 18:22

1 Answers1

0

The integral J is what you are looking for You may want to consider this (remember that it is not my solution):

https://www.facebook.com/groups/170225716325580/permalink/6514069418607813/?app=fbl

Fuzzy
  • 61