$$L=\lim_{n \to \infty} n \prod_{m = 1} ^ n \left(1 - \frac1m + \frac5{4m ^ 2}\right)$$
Let $\color{blue}{t = -\frac{1}{2} + i}$ and $\color{blue}{\bar{t} = -\frac{1}{2} - i}$
Consider this expression,
$$e^{\gamma\cdot t}\cdot e^{\gamma\cdot \bar{t}}\cdot e^{-\frac{t}{m}}\cdot e^{-\frac{\bar{t}}{m}} \prod_{m=1}^n \left(1 + \frac{t}{m}\right) \prod_{m=1}^n \left(1 + \frac{\bar{t}}{m}\right)$$
Where $\gamma$ is the Euler Mascheroni constant
$$ = e^{H_n-\gamma} \prod_{m=1}^n \left|1 + \frac{t}{m} \right|^2$$
$$ = e^{H_n-\gamma} \prod_{m=1}^n \left(1 - \frac{1}{m} + \frac{5}{4m^2}\right)$$
$$ \underset{\times \frac{n}{n}}= \frac{e^{H_n-\gamma}}{n} n \prod_{m=1}^n \left(1 - \frac{1}{m} + \frac{5}{4m^2}\right)$$
$$\color{red}{H_n \approx \log n + \gamma\implies \frac{e^{H_n-\gamma}}{n}\to 1}$$
From here,
\begin{equation*}
\boxed{\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{m=1}^{\infty} \left( 1 + \frac{z}{m} \right) e^{-z/m}\implies \frac{1}{z\Gamma(z)} = e^{\gamma z} \prod_{m=1}^{\infty} \left( 1 + \frac{z}{m} \right) e^{-z/m}}
\end{equation*}
Hence,
\begin{align*}
L &= \left(\frac{1}{t\Gamma(t)}\right)\left(\frac{1}{\bar{t}\Gamma(\bar{t})}\right) \\
&= \left(\frac{1}{\Gamma(1+t)}\right)\left(\frac{1}{\Gamma(1+\bar{t})}\right)
\end{align*}
From here,
$\Gamma(n+1)=n\Gamma(n)$
Using this,
\begin{align*}
L &= \frac{\sin(\pi(1+t))}{\pi} \\
L &= \frac{\cos(i\pi)}{\pi}
\end{align*}
$${\color{red}{\therefore\lim_{n\to\infty} n \prod_{m=1}^n \left( 1 - \frac{1}{m} + \frac{5}{4m^2} \right)=\frac{\cosh(\pi)}{\pi}}}$$