I was pondering on the symmetries that \begin{equation} \epsilon_{ijk}\delta_{\ell m} \end{equation} might have upon interchanging indices of the Kronecher delta and Levi-Civita symbol, e.g. the interchange of $i$ and $m$ or $\ell$.
Following this answer I get (see the proof below) \begin{equation} \epsilon_{ijk}\delta_{\ell m} = \epsilon_{\boldsymbol{m}jk}\delta_{\ell \boldsymbol{i}} + \epsilon_{\boldsymbol{\ell} jk}\delta_{\boldsymbol{i} m} \end{equation} This seems nice, and it's something I am looking for. But if I contract both sides with $\epsilon_{ijk}$ to make sure it holds well (sanity check!), I get the obvious contradiction \begin{equation} 6\delta_{\ell m} = 2 \delta_{im}\delta_{i\ell} + 2 \delta_{i\ell} \delta_{im} = 4 \delta_{\ell m} \end{equation} What could possibly have gone wrong? Also, and more importantly, what would be the symmetries anyway?
Edit: Proof:
Set $\hat x_i$ as the sum (see this answer)
$$\hat x_i=\delta_{i\ell}\hat x_\ell+\delta_{im}\hat x_m$$
(no summation is implied over repeated indices) so $$\begin{align} \epsilon_{ijk}\delta_{\ell m}&=\left(\hat x_i\cdot(\hat x_j \times \hat x_k)\right)\left(\hat x_{\ell} \cdot\hat x_m\right)\\\\ &=\left([\delta_{i\ell}\hat x_\ell+\delta_{im}\hat x_m]\cdot(\hat x_j \times \hat x_k)\right)\left(\hat x_{\ell} \cdot\hat x_m\right)\\\\ &=\delta_{i\ell}(\hat x_j \times \hat x_k)\cdot \hat x_{\ell}\hat x_{\ell}\cdot(\hat x_m)\\\\ &+\delta_{im}(\hat x_j \times \hat x_k)\cdot \hat x_{m}\hat x_{m}\cdot(\hat x_{\ell})\\\\ &=\delta_{i\ell}(\hat x_j \times \hat x_k)\cdot \hat x_m +\delta_{im}(\hat x_j \times \hat x_k)\cdot \hat x_{\ell}\\\\ &=\delta_{i\ell} \epsilon_{mjk} + \delta_{im}\epsilon_{\ell jk} \end{align}$$
