Let $(H, \langle \cdot, \cdot\rangle)$ be a real Hilbert space and $|\cdot|$ its induced norm. Let $T:H\to H$ be a self-adjoint bounded linear operator. Let $B_H$ be the closed unit ball of $H$. Let $S$ be the unit sphere of $H$. Let $$ \begin{align} m_1 &:= \inf_{u\in S} \langle Tu, u\rangle, \\ m_2 &:= \sup_{u\in S} \langle Tu, u\rangle. \end{align} $$
I would like to prove a result in my lecture notes, i.e.,
$\|T\| = \max \{ |m_1|, |m_2| \}$.
Could you elaborate on how to prove the challenging direction $\|T\| \le \max \{ |m_1|, |m_2| \}$?
Clearly, $m_1 \le m_2$. By Cauchy–Schwarz inequality, $$ \begin{align} m_1 &\ge \inf_{u\in S} (-|Tu|) = -\|T\|,\\ m_2 &\le \sup_{u\in S} |Tu| = \|T\|. \end{align} $$
Then $-\|T\| \le m_1 \le m_2 \le \|T\|$. Then $\max \{ |m_1|, |m_2| \} \le \|T\|$.