So SAS, SSS, ASA, AAS and RHS are reasons for congruent triangles, that means if a triangle, for example, have side lengths of 5, 6 and 8, then the triangle is unique. What I am trying to do is to find an expressions for other sides and angles in terms of the given sides and angles. I've solved it but some of the expressions are a bit long and ugly, so can anyone verify my workings and simplify them if possible? Any help would be appreciated :)
For triangles below, greek letters are angles and english letters are sides
$\alpha$ is the opposite angle of side a
$\beta$ is the opposite angle of side b
$\gamma$ is the opposite angle of side c
SAS: given sides $a$, $b$ and included angle $\gamma$
$$c^2=a^2+b^2-2ab\cos{(\gamma)}$$ $$\boxed{c=\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}$$ $$\frac{\sin{(\alpha)}}{a}=\frac{\sin{(\gamma)}}{c}$$ $$\frac{\sin{(\alpha)}}{a}=\frac{\sin{(\gamma)}}{\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}$$ $$\sin{(\alpha)}=\frac{a\sin{(\gamma)}}{\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}$$ $$\boxed{\alpha=\arcsin{\left(\frac{a\sin{(\gamma)}}{\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}\right)}}$$ $$\frac{\sin{(\beta)}}{b}=\frac{\sin{(\gamma)}}{c}$$ $$\frac{\sin{(\beta)}}{b}=\frac{\sin{(\gamma)}}{\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}$$ $$\boxed{\beta=\arcsin{\left(\frac{b\sin{(\gamma)}}{\sqrt{a^2+b^2-2ab\cos{(\gamma)}}}\right)}}$$ SSS: given sides $a$, $b$ and $c$ $$c^2=a^2+b^2-2ab\cos{(\gamma)}$$ $$a^2+b^2-c^2=2ab\cos{(\gamma)}$$ $$\boxed{\gamma=\arccos{\left(\frac{a^2+b^2-c^2}{2ab}\right)}}$$ $$b^2=a^2+c^2-2ac\cos{(\beta)}$$ $$a^2+c^2-b^2=2ac\cos{(\beta)}$$ $$\boxed{\beta=\arccos{\left(\frac{a^2+c^2-b^2}{2ac}\right)}}$$ $$a^2=b^2+c^2-2bc\cos{(\alpha)}$$ $$b^2+c^2-a^2=2bc\cos{(\alpha)}$$ $$\boxed{\alpha=\arccos{\left(\frac{b^2+c^2-a^2}{2bc}\right)}}$$ ASA: given included side $c$ and angles $\alpha$, $\beta$ $$\alpha+\beta+\gamma=\pi$$ $$\boxed{\gamma=\pi-\alpha-\beta}$$ $$\frac{\sin{(\alpha)}}{a}=\frac{\sin{(\gamma)}}{c}$$ $$\frac{\sin{(\alpha)}}{a}=\frac{\sin{(\pi-\alpha-\beta)}}{c}$$ $$\boxed{a=\frac{c\sin{(\alpha)}}{\sin{(\alpha+\beta)}}}$$ $$\frac{\sin{(\beta)}}{b}=\frac{\sin{(\gamma)}}{c}$$ $$\frac{\sin{(\beta)}}{b}=\frac{\sin{(\pi-\alpha-\beta)}}{c}$$ $$\boxed{b=\frac{c\sin{(\beta)}}{\sin{(\alpha+\beta)}}}$$ AAS: given non-included side $a$ and angles $\alpha$, $\beta$ $$\alpha+\beta+\gamma=\pi$$ $$\boxed{\gamma=\pi-\alpha-\beta}$$ $$\frac{\sin{(\beta)}}{b}=\frac{\sin{(\alpha)}}{a}$$ $$\boxed{b=\frac{a\sin{(\beta)}}{\sin{(\alpha)}}}$$ $$\frac{\sin{(\gamma)}}{c}=\frac{\sin{(\alpha)}}{a}$$ $$\boxed{c=\frac{a\sin{(\gamma)}}{\sin{(\alpha)}}}$$ RHS: given shorter side $a$, hypotenuse $c$ and right angle $\gamma=\frac{\pi}{2}$ $$\sin{(\alpha)}=\frac{a}{c}$$ $$\boxed{\alpha=\arcsin{\left(\frac{a}{c}\right)}}$$ $$\alpha+\beta+\gamma=\pi$$ $$\arcsin{\left(\frac{a}{c}\right)}+\beta+\frac{\pi}{2}=\pi$$ $$\boxed{\beta=\arccos{\left(\frac{a}{c}\right)}}$$ $$a^2+b^2=c^2$$ $$\boxed{b=\sqrt{c^2-a^2}}$$ For ASA, AAS and RHS, it isn't really that ugly but I typed them out anyways...
Edit: for $\arcsin$, the angle could be the supplement of the result depending on the angle is acute or obtuse.