Let $A = \{(x, y, z) \in \mathbb R^3 : x^2 + y^2 + z^2 = 2, xy + yz +zx +1 = 0\}$. Find infimum and supremum of the function $f$defined by the formula $f(x, y, z) = 2x+ 2y-3z$ on the set $A$.
I want to use Lagrange multipliers so I got the following system of equations: $$ \begin{cases} 2= \alpha x + \beta y + \beta z \\ 2= \alpha y + \beta x + \beta z \\ -3 = \alpha z+ \beta x + \beta y \\ x^2 + y^2 + z^2 =2 \\ xy + yz + zx +1 = 0 \end{cases} $$
Then: $$ \begin{cases} 2= \alpha x + \beta y + \beta z \\ 2= \alpha y + \beta x + \beta z \end{cases} \Rightarrow \alpha (x - y)+\beta(y-x)=0 \Rightarrow (x-y)(\alpha - \beta) =0 \Rightarrow y=x \text{ or } \alpha = \beta $$
First case:
equation: $$x^2+2xz+1=0 \Rightarrow 2xz=-1-x^2 \Rightarrow z = \frac{-1-x^2}{2x}$$
equation: $$2x^2+\frac{1+2x^2+x^4}{4x^2}=2 \Rightarrow 9x^4+2x^2+1-8x^2=0 \Rightarrow 9x^4-6x^2+1=0 \Rightarrow x = \pm \frac{1}{\sqrt 3}$$
Coordinates found: $(\frac{1}{\sqrt 3},\frac{1}{\sqrt 3},-\frac{2\sqrt 3}{3})$, $(-\frac{1}{\sqrt 3}, -\frac{1}{\sqrt 3},\frac{2\sqrt 3}{3})$.
But then I get contradiction. For example for $(\frac{1}{\sqrt 3},\frac{1}{\sqrt 3},-\frac{2\sqrt 3}{3})$: $\frac 92 = \sqrt{3} (\alpha - \beta)$ and $6=\sqrt 3 (\alpha - \beta)$
Second case:
$ 2 = \alpha (x+y+z)$ and $-3=\alpha (x+y+z)$ contradiction
Could someone check where I made a mistake? I don't think this problem has no solution...