let $a,b,c\ge 0$, such that $a+b+c=1$, prove that $$10(a^3+b^3+c^3)-9(a^5+b^5+c^5)\le\dfrac{9}{4}$$
This problem is simple as 2005, china west competition problem $$10(a^3+b^3+c^3)-9(a^5+b^5+c^5)\ge 1$$ see:(http://www.artofproblemsolving.com/Forum/viewtopic.php?p=362838&sid=00aa42b316d41e251e24e658594fcc51#p362838)
for 2005 china west problem we have two methods (at least)
solution 1: note $$(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(a+c)$$ $$(a+b+c)^5=a^5+b^5+c^5+5(a+b)(b+c)(a+c)(a^2+b^2+c^2+ab+bc+ac)$$ then $$\Longleftrightarrow 10[1-3(a+b)(b+c)(a+c)]-9[1-5(a+b)(b+c)(a+c)(a^2+b^2+c^2+ab+bc+ac)]\ge 1$$ $$\Longleftrightarrow 3(a+b)(b+c)(a+c)(a^2+b^2+c^2+ab+bc+ac)-2(a+b)(b+c)(a+c)\ge 0$$ $$\Longleftrightarrow 3(a^2+b^2+c^2+ab+bc+ac)\ge 2=2(a+b+c)^2$$ $$ a^2+b^2+c^2-ab-bc-ac\ge 0$$ It's Obviously.
solution 2:
$$10(a+b+c)^2(a^3+b^3+c^3)-9(a^5+b^5+c^5)-(a+b+c)^5\ge0$$ it is equivalent to $$15(a+b)(b+c)(c+a)(a^2+b^2+c^2-ab-bc-ca)\ge0$$
But for $$10(a^3+b^3+c^3)-9(a^5+b^5+c^5)\le\dfrac{9}{4}$$
and for this equality I think $$10a^3-9a^5\le p (a-1/3)+q$$ and let $$f(x)=10x^3-9x^5\Longrightarrow f'(x)=30x^2-45x^4\Longrightarrow p=f'(1/3)=\dfrac{25}{9}$$ $$q=f(1/3)=\dfrac{1}{9}$$ so if we can prove this $$10a^3-9a^5\le\dfrac{25}{9}(a-1/3)+\dfrac{1}{9}$$ These methods I can't work, can someone help deal it. Thank you