I understand for some function $k: [0, 1] \to [0, c]$, the Itô integral is
$$\int_{0}^{1} k(r) \, \mathrm{d}B(r) = \lim_{n\to\infty} \sum_{i=1}^{n} k(r_{i-1}) [B(r_i) - B(r_{i-1})] $$
for a standard Brownian motion $B$. Does this mean that
\begin{align*} \int_{0}^{1} k(r) \, \mathrm{d}V(r) &= \lim_{n\to\infty} \sum_{i=1}^{n} k(r_{i-1}) \left[\left \{ B(r_i)- r_iB(1) \right \} - \left \{ B(r_{i-1})- r_{i-1}B(1) \right\} \right] \\ &= \lim_{n\to\infty} \sum_{i=1}^{n} k(r_{i-1}) \left[B(r_i) - B(r_{i-1})- B(1)(r_i - r_{i-1})\right] \end{align*}
for a standard Brownian bridge process $V$? I am new to Ito's calculus, and am checking my understanding. If you can confirm and/or provide a reference that would be much appreciated!