1

What I've been told is that an inconsistent set of propositions is irrelevant in propositional logic because if it derives a contradiction, then you can't derive anything else from it, but here's my doubt:

Take $\Gamma = \{p \land q, \neg(p \land q)\}.$ This clearly derives a contradiction. But by $(\land E)$, can't I derive both p and q from $p \land q$, such that I can say that $\Gamma \vdash p$ and $\Gamma \vdash q$?

Jonas
  • 317

1 Answers1

0

In most of the deduction systems, the principle of ex falso sequitur quodlibet is built into the definitions of the systems.

Let us see that

$$\Gamma\vdash\bot\implies\Gamma\vdash\phi$$

for any formula $\phi$ in a Hilbert-style axiomatic system where the principle is not immediately visible. We shall use Łukasiewicz's axioms

(Ax1)$\quad A\rightarrow(B\rightarrow A)$

(Ax2)$\quad(A\rightarrow(B\rightarrow C))\rightarrow((A\rightarrow B)\rightarrow(A\rightarrow C))$

(Ax3)$\quad(\neg A\rightarrow\neg B)\rightarrow(B\rightarrow A)$.

with the inference rule of modus ponens (MP). We shall employ essentially the metatheorems

  1. $(A\rightarrow B)\rightarrow(\neg B\rightarrow \neg A)$, which is the converse of Ax3.
  2. $\neg\neg A\rightarrow A$

The full proofs of these theorems would take us far afield; to have an idea, see, for example, my answer to a previous question).

Recall that the set of connectives $\{\rightarrow, \neg\}$ is functionally complete. Thus, we can express any formula with the familiar canonical connectives using the definitions

  • $A\wedge B\equiv\neg(A\rightarrow\neg B)$
  • $A\vee B\equiv\neg A\rightarrow B$
  • $A\leftrightarrow B\equiv\neg((A\rightarrow B)\rightarrow\neg(B\rightarrow A))$

We shall abbreviate a contradiction (e.g., $A\wedge\neg A$) with $\bot$ in the following argument; ipso facto, $\neg\bot$ is a theorem and can be written as a line by itself. So,

  1. $\Gamma\vdash\bot\tag{Assumption}$
  2. $\vdash\bot\rightarrow(\neg\phi\rightarrow\bot)\tag{Ax1}$
  3. $\Gamma\vdash\neg\phi\rightarrow\bot\tag{MP 1, 2}$
  4. $\vdash\neg\bot\tag{Theorem}$
  5. $\vdash(\neg\phi\rightarrow\bot)\rightarrow(\neg\bot\rightarrow\neg\neg\phi)\tag{Metatheorem}$
  6. $\Gamma\vdash\neg\bot\rightarrow\neg\neg\phi\tag{MP 3, 5}$
  7. $\Gamma\vdash\neg\neg\phi\tag{MP 4, 6}$
  8. $\vdash\neg\neg\phi\rightarrow\phi\tag{Metatheorem}$
  9. $\Gamma\vdash\phi\tag{MP 7, 8}$
Tankut Beygu
  • 4,412