In most of the deduction systems, the principle of ex falso sequitur quodlibet is built into the definitions of the systems.
Let us see that
$$\Gamma\vdash\bot\implies\Gamma\vdash\phi$$
for any formula $\phi$ in a Hilbert-style axiomatic system where the principle is not immediately visible. We shall use Łukasiewicz's axioms
(Ax1)$\quad A\rightarrow(B\rightarrow A)$
(Ax2)$\quad(A\rightarrow(B\rightarrow C))\rightarrow((A\rightarrow B)\rightarrow(A\rightarrow C))$
(Ax3)$\quad(\neg A\rightarrow\neg B)\rightarrow(B\rightarrow A)$.
with the inference rule of modus ponens (MP). We shall employ essentially the metatheorems
- $(A\rightarrow B)\rightarrow(\neg B\rightarrow \neg A)$, which is the converse of Ax3.
- $\neg\neg A\rightarrow A$
The full proofs of these theorems would take us far afield; to have an idea, see, for example, my answer to a previous question).
Recall that the set of connectives $\{\rightarrow, \neg\}$ is functionally complete. Thus, we can express any formula with the familiar canonical connectives using the definitions
- $A\wedge B\equiv\neg(A\rightarrow\neg B)$
- $A\vee B\equiv\neg A\rightarrow B$
- $A\leftrightarrow B\equiv\neg((A\rightarrow B)\rightarrow\neg(B\rightarrow A))$
We shall abbreviate a contradiction (e.g., $A\wedge\neg A$) with $\bot$ in the following argument; ipso facto, $\neg\bot$ is a theorem and can be written as a line by itself. So,
- $\Gamma\vdash\bot\tag{Assumption}$
- $\vdash\bot\rightarrow(\neg\phi\rightarrow\bot)\tag{Ax1}$
- $\Gamma\vdash\neg\phi\rightarrow\bot\tag{MP 1, 2}$
- $\vdash\neg\bot\tag{Theorem}$
- $\vdash(\neg\phi\rightarrow\bot)\rightarrow(\neg\bot\rightarrow\neg\neg\phi)\tag{Metatheorem}$
- $\Gamma\vdash\neg\bot\rightarrow\neg\neg\phi\tag{MP 3, 5}$
- $\Gamma\vdash\neg\neg\phi\tag{MP 4, 6}$
- $\vdash\neg\neg\phi\rightarrow\phi\tag{Metatheorem}$
- $\Gamma\vdash\phi\tag{MP 7, 8}$