I have to proove that $(K_{p,p}⊗ I_p)(\vec{a}⊗\vec{a}⊗\vec{a})$ equals $(\vec{a}⊗\vec{a}⊗\vec{a})$, where $\vec{a}$ is px1 vector, $I_p$ is unit matrix pxp and $K_{p,p}$ is commutation matrix ppxpp. I have some ideas, but I'm not sure, do I think right. I tried to proove it from right to left. Starting from $(\vec{a}⊗\vec{a}⊗\vec{a})$ = $((\vec{a}⊗\vec{a})⊗\vec{a})$
I used to fact, that $(\vec{a}⊗\vec{a})= K_{p,p} \cdot(\vec{a}⊗\vec{a}) \cdot K_{1,1}$. And I know, that commutation matrix is orthogonal, so $K_{p,p}'\cdot K_{p,p}=I_{p,p}$. So I have $K_{p,p}\cdot I_{p,p}\cdot (\vec{a}⊗\vec{a})$. But are $K_{p,p}\cdot I_{p,p}$ and $K_{p,p}⊗I_{p}$ equal?