Given the quadrilateral $ABGE$, angles $ABG$ and $EAB$ are both $80$ $degrees$, angle $GAB$ is $50$ $degrees$, and angle $EBA$ is $60$ $degrees$. Find the value of angle $\theta$.
I use the solution found in this link: How to find missing angles in a quadrilateral
Use sine theorem for $ΔABG$ and $ΔAGE$:
$\frac{AB}{\sin{40}}=\frac{AG}{\sin{80}}$
$\frac{AE}{\sin{AGE}}=\frac{AG}{\sin{(20+AGE)}}$
Noting $AB=AE$, we can find $mAGD=30$,$mBEG=80$.
How does $\frac{AE}{\sin{AGE}}=\frac{AG}{\sin{(20+AGE)}}$?