When trying to prove this q-binomial identity I had soon the idea that here we have a q-Vandermonde identity in disguise. I could transform the identity to
\begin{align*} \color{blue}{(-1)^mq^{\binom{m+1}{2}+mn} \sum_{j=0}^m\binom{n}{j}_q\binom{-n-1}{m-j}_qq^{j(j-m-n)}=1}\tag{1} \end{align*} for non-negative integers $n\leq m$. The identity (1) looks similar to the following q-Vandermonde identity: \begin{align*} \sum_{j=0}^m&\binom{n}{j}_q\binom{-n-1}{m-j}_qq^{j(j-m-n-1)} =\binom{-1}{m}_q=(-1)^mq^{-\binom{m+1}{2}}\tag{2.1} \end{align*} from which \begin{align*} \color{blue}{(-1)^mq^{\binom{m+1}{2}}\sum_{j=0}^m\binom{n}{j}_q\binom{-n-1}{m-j}_qq^{j(j-m-n-1)}=1}\tag{2.2} \end{align*} follows.
In (2.1) we use besides the q-Vandermonde identity \begin{align*} \binom{n+m}{t}_q=\sum_{j=0}^t\binom{n}{j}_q\binom{m}{t-j}_qq^{j(m-t+j)} \end{align*} the identity \begin{align*} \color{blue}{\binom{-n}{k}_q} &=\frac{\left(1-q^{-n}\right)\left(1-q^{-n-1}\right)\cdots\left(1-q^{-n-k+1}\right)} {\left(1-q\right)\left(1-q^2\right)\cdots\left(1-q^k\right)}\\ &=\left(\prod_{j=n}^{n+k-1}q^{-j}\right)(-1)^k \frac{\left(1-q^{n}\right)\left(1-q^{n+1}\right)\cdots\left(1-q^{n+k-1}\right)} {\left(1-q\right)\left(1-q^2\right)\cdots\left(1-q^k\right)}\\ &=q^{-\sum_{j=n}^{n+k-1}j}(-1)^k\binom{n+k-1}{k}_q\\ &=q^{-\sum_{j=0}^{k-1}(j+n)}(-1)^k\binom{n+k-1}{k}_q\\ &\,\,\color{blue}{=q^{-nk-\binom{k}{2}}(-1)^k\binom{n+k-1}{k}_q} \end{align*}
Question: How can we algebraically derive identity (1)? It seems that (2.2) could be helpful.