Let $(x_n)$ be the sequence define by \begin{cases} x_1 = 1 \\ x_{n+1} = \frac{1}{2}\left( x_n + \frac{2}{x_n} \right) \end{cases}. Show that $1\leqslant x_n \leqslant\frac{3}{2}\ \forall n\in\mathbb{N}$.
I've tried by induction. My induction hypothesis was the vadility of $1\leqslant x_k \leqslant\frac{3}{2}$ for some $k\in\mathbb{N}$. From that it is easy to show that $x_{k+1}\geqslant 1$. In fact, $1\leqslant x_k$ implies $3\leqslant x_k^2+2$ and $x_k\leqslant\frac{3}{2}$ implies $1\leqslant\frac{3}{2x_k}$. Then, \begin{align} x_{k+1} &= \frac{x_k^2+2}{2x_k}\\ &\geqslant \frac{3}{2x_k}\\ &\geqslant 1. \end{align} But I'm stuck with $x_{k+1}\leqslant\frac{3}{2}$. I only get $x_{k+1}\leqslant\frac{17}{8}$, way over $\frac{3}{2}$. I think there must be some preliminay result that makes this last part easier, but I do not know. Any hint would be enough. Thanks in advance.