Partial solution
I'm not sure whether the closed form for the sum can be obtained, but we can get a very simple approximation that perfectly works for a wide range of $n$.
First, we note that
$$S(n)=\sum_{k=1}^{\infty} k\left( (1-2^{-k})^n - (1-2^{-k+1})^n \right)=\lim_{N\to\infty}\left((N+1)\Big(1-\frac1{2^{N+1}}\Big)^n-\sum_{k=0}^N\Big(1-\frac1{2^k}\Big)^n\right)$$
$$=\lim_{N\to\infty}\left(N+1-\sum_{k=0}^N\Big(1-\frac1{2^k}\Big)^n\right)=1+\lim_{N\to\infty}\big(N-S_0(N,n)\big)\tag{1}$$
To evaluate the second sum we can, probably, use the Abel-Plana' formula, but it is also convenient in this case to use the Euler-Macklaurin' summation formula.
Denoting $\displaystyle f(k)=\Big(1-\frac1{2^k}\Big)^n=e^{n\ln(1-e^{-k\ln2})}$, we notice that
$$f(0)=0; \,f(N)=\Big(1-\frac1{2^N}\Big)^n\to 1\,\,\text{at}\,\, N\to\infty\,\,\text{and}\,\, \text{fixed}\, \,n$$
$$f'(k)=n\ln2\frac{\big(1-\frac1{2^k}\big)^n}{2^k-1}=\frac{n\ln2}{2^{nk}}\big(2^k-1)^{n-1};\,f'(0)=0\,\,\text{for}\,\,n>1;\,\,f'(N)\to 0\,\,\text{at}\,\, N\to\infty$$
The same story happens with the higher derivatives: $\displaystyle f^{(j)}(0)\neq0 \,\,\text{only at} \,\,j=n;\,f^{(N)}(0)\to 0\,\,\text{at}\,\,N\to\infty$
At $n\to\infty\,\,f^{(j)}(0)\to 0$.
Therefore, using the Euler-Maclaurin formula, we can approximate the second term in (1) as
$$S_0(N,n)\sim\frac{f(N)}2+\int_0^N(1-e^{-k\ln2})^ndk$$
$$=\frac{f(N)}2+k\left(1-e^{-k\ln2}\right)^n\bigg|_0^N-n\ln2\int_0^Nk\left(1-e^{-k\ln2}\right)^{n-1}e^{-k\ln2}dk$$
Making the substitution $x=e^{-k\ln2}$ and keeping in mind that $N\to\infty$
$$S_0(N,n)\sim\frac12+N+\frac n{\ln2}\int_0^1(1-x)^{n-1}\ln x\,dx=N+\frac12-\frac{\psi(n+1)+\gamma}{\ln2}\tag{2}$$
Putting (2) into (1)
$$\boxed{\,\,S(n)=\sum_{k=1}^{\infty} k\Big( (1-2^{-k})^n - (1-2^{-k+1})^n \Big)\sim\frac{\psi(n+1)+\gamma+\frac{\ln2}2}{\ln2}\,\,}$$
Just to notice that $n$ is any positive number (not necessarily an integer); at $n\to\infty$ $\displaystyle \psi(n+1)=\ln n+\frac1{2n}+ \,...$
The numeric check with WolframAlpha shows that the approximation works very well for a wide range of $n$ :
$\displaystyle n=1000\quad S(1000)=\color{blue}{11.29780}9990...;\quad\text{approximation}\,=\color{blue}{11.29780}8994...$
$\displaystyle n=100\qquad S(100)=\color{blue}{7.98380}15...;\quad\text{approximation}\,=\color{blue}{7.98380}38...$
$\displaystyle n=10\qquad S(10)=\color{blue}{4.725}55...;\quad\text{approximation}\,=\color{blue}{4.725}60...$
$\displaystyle n=5\qquad S(5)=\color{blue}{3.7941}628...;\quad\text{approximation}\,=\color{blue}{3.7941}536...$
$\displaystyle n=2\qquad S(2)=\color{blue}{2.66}66...;\quad\text{approximation}\,=\color{blue}{2.66}40...$
$\displaystyle n=1\qquad S(1)=2;\quad\text{approximation}\,=1.942...$