Since the two initial conditions luckily belong to the periodic functions with period $2\pi$ , i.e. which automatically satisfy the periodic boundary condition, the periodic boundary condition is equivalent to nothing.
If you view this question by power series method approach, you will find that it is very easy to solve.
Similar to PDE - solution with power series:
Let $u(x,t)=\sum\limits_{n=0}^\infty\dfrac{x^n}{n!}\dfrac{\partial^nu(0,t)}{\partial x^n}$ ,
Then $u(x,t)=\sum\limits_{n=0}^\infty\dfrac{x^{2n}}{(2n)!}\dfrac{\partial^{2n}u(0,t)}{\partial x^{2n}}+\sum\limits_{n=0}^\infty\dfrac{x^{2n+1}}{(2n+1)!}\dfrac{\partial^{2n+1}u(0,t)}{\partial x^{2n+1}}$
$u(x,t)=\sum\limits_{n=0}^\infty\dfrac{x^{2n}}{(2n)!}\dfrac{\partial^nu(0,t)}{\partial t^n}+\sum\limits_{n=0}^\infty\dfrac{x^{2n+1}}{(2n+1)!}\dfrac{\partial^nu_x(0,t)}{\partial t^n}$
$u(x,t)=1+\sum\limits_{n=0}^\infty\dfrac{x^{2n}}{(2n)!}\sin\left(\dfrac{n\pi}{2}+t\right)+\sum\limits_{n=0}^\infty\dfrac{x^{2n+1}}{(2n+1)!}\sin\biggl(\dfrac{(2n+1)\pi}{4}+t\biggr)$
$u(x,t)=1+\sum\limits_{n=0}^\infty\dfrac{x^{4n}}{(4n)!}\sin(n\pi+t)+\sum\limits_{n=0}^\infty\dfrac{x^{4n+2}}{(4n+2)!}\sin\left(\dfrac{(2n+1)\pi}{2}+t\right)+\sum\limits_{n=0}^\infty\dfrac{x^{4n+1}}{(4n+1)!}\sin\biggl(\dfrac{(4n+1)\pi}{4}+t\biggr)+\sum\limits_{n=0}^\infty\dfrac{x^{4n+3}}{(4n+3)!}\sin\biggl(\dfrac{(4n+3)\pi}{4}+t\biggr)$
$u(x,t)=1+\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n}\sin t}{(4n)!}+\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n+2}\cos t}{(4n+2)!}+\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n+1}(\sin t+\cos t)}{\sqrt2(4n+1)!}+\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n+3}(\sin t-\cos t)}{\sqrt2(4n+3)!}$
$u(x,t)=1+\cosh\dfrac{x}{\sqrt2}\cos\dfrac{x}{\sqrt2}\sin t+\sinh\dfrac{x}{\sqrt2}\sin\dfrac{x}{\sqrt2}\cos t+\dfrac{1}{2}\left(\sinh\dfrac{x}{\sqrt2}\cos\dfrac{x}{\sqrt2}+\cosh\dfrac{x}{\sqrt2}\sin\dfrac{x}{\sqrt2}\right)(\sin t+\cos t)+\dfrac{1}{2}\left(\cosh\dfrac{x}{\sqrt2}\sin\dfrac{x}{\sqrt2}-\sinh\dfrac{x}{\sqrt2}\cos\dfrac{x}{\sqrt2}\right)(\sin t-\cos t)$
$u(x,t)=1+\left(\sin\dfrac{x}{\sqrt2}+\cos\dfrac{x}{\sqrt2}\right)\cosh\dfrac{x}{\sqrt2}\sin t+\left(\sin\dfrac{x}{\sqrt2}+\cos\dfrac{x}{\sqrt2}\right)\sinh\dfrac{x}{\sqrt2}\cos t$
$u(x,t)=1+\left(\sin\dfrac{x}{\sqrt2}+\cos\dfrac{x}{\sqrt2}\right)\left(\cosh\dfrac{x}{\sqrt2}\sin t+\sinh\dfrac{x}{\sqrt2}\cos t\right)$