Let $(\Omega, \mathcal F, \mu)$ be a $\sigma$-finite measure space. I'm trying to prove below hint in Brezis' Functional Analysis, i.e.,
Let $p \in [1, \infty)$ and $p'$ its Hölder conjugate. Let $f_n,f,g:\Omega \to \mathbb R$ be measurable functions such that $f_n,f \in L^p(\Omega)$ for all $n$. Assume $f_n \to f$ in the weak topology $\sigma(L^p, L^{p'})$ and $f_n \to g$ $\mu$-a.e. Then $f=g$ $\mu$-a.e.
Could you confirm if my attempt is fine?
Is there a way to bypass the use of exercise 3.4.1?
Proof First, we need the following result, i.e.,
Brezis' exercise 3.4.1 Let $E$ be a Banach space and $(x_n) \subset E$ such that $x_n \to x$ in $\sigma(E, E^*)$. Then there exists a sequence $(y_n) \subset E$ such that $y_n \in \operatorname{conv} (\{x_n, x_{n+1}, \ldots\})$ for all $n$ and $y_n \rightarrow x$ in norm.
Let $(g_n)$ be a sequence given by above result for the pair $((f_n)_n, f)$. Then $g_n \in \operatorname{conv} (\{f_n, f_{n+1}, \ldots\})$ and $g_n \to f$ in $L^p$. There is a sub-sequence $\varphi$ of $\mathbb N$ such that $g_{\varphi (n)} \to f$ $\mu$-a.e.
Fix $\omega \in \Omega$ such that $f_n (\omega) \to g (\omega)$ and $g_{\varphi (n)} (\omega) \to f (\omega)$. Fix $\varepsilon >0$. There is $N$ such that for every $n >N$ $$ \begin{align} |f_n(\omega) - g (\omega)| &< \varepsilon. \end{align} $$
Fix $n>N$. There is $\psi (n) > \varphi (n)$ and a probability vector $(t_i)_{i=\varphi (n)}^{\psi (n)}$ such that $$ g_{\varphi (n)} = \sum_{i=\varphi (n)}^{\psi (n)} t_i f_i \quad \mu \text{-a.e.} $$
Then $$ |g_{\varphi (n)} (\omega) - g (\omega)| \le \sum_{i=\varphi (n)}^{\psi (n)} t_i |f_i (\omega) - g(\omega)| < \varepsilon. $$
Hence $g_{\varphi (n)} (\omega) \to g (\omega)$. It follows that $g(\omega) = f(\omega)$. This completes the proof.