I am tying to disprove it but I feel my proof is lacking, please let me know what I can improve on from here, thanks!:
- If $a ≡ b$ mod $m$, then $m|a-b$ i.e. $a-b=km$, $k$ is an int.
- Square both sides we get: $(a-b)^2=k^2m^2\implies a^2-2ab+b^2=k^2m^2$
- Then $a^2+b^2=2ab+k^2m^2$
- This means that $m^2|a^2+b^2$ and not $m^2|a^2-b^2$ i.e. $a^2≡b^2$ mod $m^2$
- Therefore the statement If $a ≡ b$ mod $m$, then $a^2 ≡ b^2$ mod $m^2$, is false.