I saw this on quora.
Solve
$\begin{array}\\ \sin a &=\sin x+\sin y\\ \cos a &=\cos x+\cos y\\ \end{array} $
for $x$ and $y$ in terms of $a$.
Here is my solution.
My question: is there a better way of solving this?
My answer is $y =a+\frac{\pi}{3} $ and $x =a-\frac{\pi}{3} $.
Squaring and adding, $1 = 2+2\sin(x)\sin(y)+2\cos(x)\cos(y) $ or $\cos(x-y) =-\frac12 $ so $x-y =\pm\frac{2\pi}{3} $ so either $x =y+\frac{2\pi}{3} $ or $x =y-\frac{2\pi}{3} $.
(I'm not worrying about the $2 k\pi$ for now.)
Substituting $x =y+\frac{2\pi}{3} $ in the first,
$\begin{array}\\ \sin a &=\sin x+\sin y\\ &=\sin(y+\frac{2\pi}{3})+\sin y\\ &=\sin(y)\cos(\frac{2\pi}{3})+\cos(y)\sin(\frac{2\pi}{3})+\sin y\\ &=-\frac12\sin(y)+\frac{\sqrt{3}}{2}\cos(y)+\sin y\\ &=\frac12\sin(y)+\frac{\sqrt{3}}{2}\cos(y)\\ &=\sin(\frac{\pi}{6})\sin(y)+\cos(\frac{\pi}{6})\cos(y)\\ &=\cos(y-\frac{\pi}{6})\\ &=\sin(\frac{\pi}{2}-(y-\frac{\pi}{6})) \qquad\text{(using } \cos(z)=\sin(\frac{\pi}{2}-z))\\ &=\sin(\frac{2\pi}{3}-y)\\ \end{array} $
so $y =-a+\frac{2\pi}{3} $ and $x =y+\frac{2\pi}{3} =-a+\frac{4\pi}{3} $.
Checking,
$\begin{array}\\ \sin x+\sin y =\sin(a)\\ \cos x+\cos y =-\cos(a)\\ \end{array} $
so this doesn't work!!!
Note: the checking was done by Wolfram Alpha.
Try the other solution.
Substituting $x =y-\frac{2\pi}{3} $ in the first,
$\begin{array}\\ \sin a &=\sin x+\sin y\\ &=\sin(y-\frac{2\pi}{3})+\sin y\\ &=\sin(y)\cos(-\frac{2\pi}{3})+\cos(y)\sin(-\frac{2\pi}{3})+\sin y\\ &=-\frac12\sin(y)-\frac{\sqrt{3}}{2}\cos(y)+\sin y\\ &=\frac12\sin(y)-\frac{\sqrt{3}}{2}\cos(y)\\ &=\sin(\frac{\pi}{6})\sin(y)-\cos(\frac{\pi}{6})\cos(y)\\ &=-\cos(y+\frac{\pi}{6})\\ &=-\sin(\frac{\pi}{2}-(y+\frac{\pi}{6}))\\ &=-\sin(\frac{\pi}{3}-y)\\ &=\sin(y-\frac{\pi}{3})\\ \end{array} $
so $y =a+\frac{\pi}{3} $ and $x =y-\frac{2\pi}{3} =a-\frac{\pi}{3} $.
Upon checking, this works.