Let $A\subset\mathbb{R}$ be an upper bounded set. Then
$$\forall\varepsilon>0~\exists x\in A\text{ such that }\sup{A}-\varepsilon< x \leq \sup A$$ I want to negate that statement. Would it be: $$ \exists \varepsilon>0~\forall x\in A\text{ such that } \sup A-\varepsilon\geq x\text{ or }x>\sup A~~?$$