If $a\geq 0$, expand $\cos^a x$ in terms of $\cos kx$, $\sin mx$
$$\cos^a x=\left(\frac{e^{ix}+e^{-ix}}2\right)^a$$ Since $a$ is a non negative real number, so by General Binomial theorem $$\cos^a x=\frac1{2^a}\sum_{k=0}^\infty\binom ake^{ikx}e^{-i(a-k)x}$$ where $\binom ak=a(a-1)(a-2)...(a-k+1)$ $$\cos^a x=\frac1{2^a}\sum_{k=0}^\infty\binom ake^{i(2k-a)x}$$ Any help would be appreciated.