$\def\F\{\operatorname F}\def\E{\operatorname E}$
Elliptic F$(x,m)$ appears in elliptic E$(x,m) =\int_0^x\sqrt{1-m\sin^2(x)}dx$ parameter $m$ transformations. Luckily the DLMF has reciprocal/imaginary modulus transformations and Gauss/Landen transformations, but these both use $\E(x,k)= \int_0^x\sqrt{1-k^2\sin^2(x)} dx$. The following formulas work around $z=0$:
Reciprocal parameter transformation:
$$\E(z,m)=\sqrt m\E\left(\sin^{-1}\left(\sqrt m\sin(z)\right),\frac1m\right)+\frac{1-m}{\sqrt m}\F\left(\sin^{-1}(\sqrt m\sin(z),\frac1m\right)\tag1$$
Complementary parameter/imaginary argument transformation:
$$\E(z,m)=i\E(i\tanh^{-1}(\sin(z)),1-m)-i\F(i\tanh^{-1}(\sin(z)),1-m)+\sin(z)\sqrt{\frac{1-m\sin^2(z)}{\cos^2(z)}}$$
Negative parameter transform from ResearchGate using Elliptic $\E(z)$ and complex conjugate $\bar z$
$$\E(z,m)\mathop=^{m<1}\sqrt{1-m}\left(\E\left(\frac m{1-m}\right)-\E\left(\frac\pi 2-z,\frac m{1-m}\right)\right)\mathop=^{m>1}-\overline{\sqrt{1-m}\left(\E\left(\frac m{1-m}\right)-\E\left(\frac\pi 2-z,\frac m{1-m}\right)\right)}\tag2$$
Ascending Landen transformation:
$$\E(z,m)=(1+\sqrt m)\E\left(\frac12(\sin^{-1}(\sqrt m\sin(z))+z),\frac{2\sqrt m}{m+1}\right)+ (1-\sqrt m)\F\left(\frac12(\sin^{-1}(\sqrt m\sin(z))+z),\frac{2\sqrt m}{m+1}\right)-\sqrt m\sin(z)$$
Descending Landen transformation:
$$\E(z,m)=\frac{\sqrt{1-m}+1}2\E\left(\tan^{-1}(\sqrt{1-m}\tan(z))+z,\left(\frac{\sqrt{1-m}-1}{\sqrt{1-m}+1}\right)^2\right)-\sqrt{1-m}\F(z,m)+\frac{m\cos(z)\sin(z)}{2\sqrt{1-m\sin^2(z)}}$$
These formulas answer most of the original question, but they use $\frac{m\cos(z)\sin(z)}{2\sqrt{1-m\sin^2(z)}}$ and other complicated trigonometric expressions.
What are other simpler transformations for $\E(z,m)$, perhaps without trigonometric expressions like in $(1),(2)$?
$$ E(\varphi, im) = \int_{0}^{\varphi} \sqrt{1-im\sin^2\varphi} = \int_{0}^{\varphi} \sqrt{1-(\sqrt{im})^2\sin^2\varphi}=\int_{0}^{\varphi} \sqrt{1-(e^{\frac{i\pi}{4}}\sqrt{m})^2\sin^2\varphi}$$
So $k = e^{\frac{i\pi}{4}}\sqrt{m}$ in the standard notation.
– Bertrand87 Mar 20 '23 at 01:22$$ k = \sqrt{m}e^{\frac{i\pi}{4}} = \frac{\sqrt{m}}{\sqrt{2}}+\frac{i\sqrt{m}}{\sqrt{2}}$$
This is a non--purely imaginary modulus. All the transoformations in the theory for imaginary modulus are made with purely imaginary modulus. i.e. modulus of the form $i\bar{k}$ with $\bar{k}\in \mathbb{R} $
– Bertrand87 Mar 20 '23 at 01:32$$ \int_{0}^{\varphi} \sqrt{1-(ik)^2\sin \varphi}d\varphi =\int_{0}^{\varphi} \sqrt{1+k^2\sin \varphi} d\varphi = \int_{0}^{\varphi} \sqrt{1-(-m)\sin \varphi}d\varphi = E(\varphi,-m) $$
So the transformation of "negative modulus" in Mathematica is equivalent to the transformation of imaginary modulus in the standard notation.
– Bertrand87 Mar 20 '23 at 04:05