Let $R=K[[x_1,\ldots,x_n]]$ the power series ring over a field $K$ of prime characteristic $p$. If we take $K$ if $F$-finite, I know show that $R^{1/p}$ is a free $R$-module. If $K$ not is $F$-finite, is $R^{1/p}$ a free $R$-module?
Notation. $R^{1/p}$ is the set of $p$- th roots of elements of $R$ ,i.e, $R^{1/p}=\{r^{1/p} \mid r \in R\}$. Its $R$-module structure is given by $s \cdot r^{1/p}=(s^pr)^{1/p}$.