In my research I encountered the following double series involving reciprocals of Beta functions: \begin{equation} f(x,y) :=\sum_{j=0}^\infty \sum_{k=0}^\infty \frac{x^j}{j!}\frac{y^k}{k!} \frac{1}{\boldsymbol{B}(j+1,k+1)} = \ ? \end{equation} where $x,y$ are non-negative and $\boldsymbol{B}(j+1,k+1) := \frac{j!k!}{(j+k+1)!}. $
Is there a known closed form for $f(x,y)$?
Some ideas: 1.The summation over $k$ yields \begin{equation} f(x,y) = \sum_{j=0}^\infty \frac{x^j}{j!} (j+1) L_{-(j+2)}(y) = e^y\sum_{j=0}^\infty \frac{x^j}{j!} (j+1) L_{j+1}(-y), \end{equation} where $L_{n}(x)$ is the $n$-th Laguerre polynomial. In the same way, summing first over $j$ yields \begin{equation} f(x,y) = e^x\sum_{k=0}^\infty \frac{y^k}{k!} (k+1) L_{k+1}(-x). \end{equation}
Alternatively, using the integral representation of the Gamma function it follows that \begin{equation} f(x,y) = \int_0^\infty I_0(2\sqrt{xt}) I_0(2\sqrt{yt}) t e^{-t} dt, \end{equation} where $I_0(x)$ is the zero-order modified Bessel function of the first kind.
Thanks @Tyma Gaidash for pointing me towards hypergeometric functions in two variables. The series is a special case of a Humbert series: \begin{equation} f(x,y) = \Psi_2(2,1,1;x,y) \end{equation}
I am happy about ideas and suggestions. Thanks!