Expanding on what are already mentioned in the comments to full explicit form, let $v$ be the 3-dimensional vector field
$$v = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \end{pmatrix}$$
The first order covariant derivative of $v$ is the 3-dimensional vector field:
$$ \nabla_i v = \begin{pmatrix} \frac{\partial v_0}{\partial i} - \Gamma^0_{i0}v_0 - \Gamma^0_{i1}v_1 - \Gamma^0_{i2}v_2 \\ \frac{\partial v_1}{\partial i} - \Gamma^1_{i0}v_0 - \Gamma^1_{i1}v_1 - \Gamma^1_{i2}v_2 \\ \frac{\partial v_2}{\partial i} - \Gamma^2_{i0}v_0 - \Gamma^2_{i1}v_1 - \Gamma^2_{i2}v_2\end{pmatrix}$$
Renaming this vector field as
$$ w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} = \nabla_i v$$
We can now repeat the same procedure on $w$ to get to the second order covariant derivative of $v$:
$$ \nabla_{ji} w = \nabla_j \nabla_i v = \begin{pmatrix} \frac{\partial w_0}{\partial i} - \Gamma^0_{i0}w_0 - \Gamma^0_{i1}w_1 - \Gamma^0_{i2}w_2 \\ \frac{\partial w_1}{\partial i} - \Gamma^1_{i0}w_0 - \Gamma^1_{i1}w_1 - \Gamma^1_{i2}w_2 \\ \frac{\partial w_2}{\partial i} - \Gamma^2_{i0}w_0 - \Gamma^2_{i1}w_1 - \Gamma^2_{i2}w_2\end{pmatrix}$$
There are 3 first order covariant derivative vector fields of $v$,
$$\nabla v = \begin{bmatrix}\nabla_0 v \\ \nabla_1 v \\ \nabla_2 v\end{bmatrix}$$
and there are 3x3 second order covariant derivative vector fields of $v$,
$$\nabla^2 v = \begin{bmatrix}\nabla_0\nabla_0 v & \nabla_0\nabla_1 v & \nabla_0\nabla_2 v \\ \nabla_1\nabla_0 v & \nabla_1\nabla_1 v & \nabla_1\nabla_2 v \\ \nabla_2\nabla_0 v & \nabla_2\nabla_1 v & \nabla_2\nabla_2 v\end{bmatrix}$$