Let $V \sim f(v) = Tv^2,$ such that $-2<v<1$ and $T$ is a constant. I want to know the distribution of $W=V^2$ and the value $T$. My attempt is that $V = \pm \sqrt{ W }.$ We know that $$\int_{-2}^1 Kx^2 = 1 \quad \Rightarrow 3K =1, \quad K = 1/3$$
Then $V\sim f(v) = \frac{1}{3}v^2, \ -2<v<1$ and $$F_V(v) = \int_{-2}^y \frac{1}{3} v^2 dy + \int_{y}^1 \frac{1}{3} v^2 dy = \frac{y^3+8}{9}+\frac{1-y^3}{9} = 1$$ Then, \begin{align*} F_V (W \le w) & = P(V \le \pm \sqrt{w})\\ & = P(-\sqrt{w} \le V \le \sqrt{w})\\ & = F_V(\sqrt{w}) - F_V(-\sqrt{w})\\ f_V(w) & = \frac12 f_V (w^{-1/2}) - \frac12 f_V (-w^{-1/2})\\ & = \frac12\left(\frac13(w^{-1}) \right) + \frac12\left(\frac13(w^{-1}) \right)\\ & \stackrel{?}{=} \frac{1}{3}w \end{align*}
Could that be wrong?