Let $\mathfrak {g}$ be a Lie bialgebra. Then $\mathfrak {g}^{\ast}$ is also a Lie bialgebra which is dual to $\mathfrak {g}.$ Let the brackets on $\mathfrak {g}$ and $\mathfrak {g}^{\ast}$ be denoted by $b$ and $b'$ respectively. Then how to define the coadjoint action of $\mathfrak {g}^{\ast}$ on $\mathfrak {g}\ $? I am familiar with the coadjoint action of $\mathfrak {g}$ on $\mathfrak {g}^{\ast}$ which is defined as follows $:$
Given $x \in \mathfrak {g}$ we define $ad_{b}^{\ast} (x) = (ad_{b} (-x))^{\ast}.$ In terms of the pairing $(\cdot, \cdot)$ between $\mathfrak {g}$ and $\mathfrak {g}^{\ast}$ coadjoint action takes the following form $:$
$$\left (ad_{b}^{\ast} (x) (\alpha), y \right ) = \left (\alpha, -ad_{b} (x) (y) \right ) = - \alpha (b(x,y)).$$ Now how to define coadjoint action of $\mathfrak {g}^{\ast}$ on $\mathfrak {g}\ $? In one of the books on Poisson structures I have come across that it is being defined in terms of the pairing $(\cdot, \cdot)$ as follows $:$ $$\left (b' (\xi, \eta) , x \right ) = - \left (\eta, ad_{b'}^{\ast} (\xi) (x) \right ).$$ Now $ad_{b'} (\xi) \in \text {End} (\mathfrak {g}^{\ast \ast}).$ Then how can it act upon $x \in \mathfrak {g}\ $?
I am clueless at this stage. Any help in this regard would be warmly appreciated.
Thanks for your time.