This question is part of a calculus problem, involving the limit of a rational function. I modified it a little bit to make it more interesting. The question is:
$x^4+x^3-x^2-5x+4=0$, find all the solutions (real and complex) to this polynomial
This is my attempt, please do let me know if this is correct, if it can be improved and please share your approach to!
Since this is a quartic polynomial, factoring it is going to be challenging (if not impossible in some cases). However, I'm going to attempt to factor it into quadratics:
$$x^4+x^3-x^2-5x+4=0$$
$$x^2(x^2-1)+x^3-1-5x+5=0$$
$$x^2(x-1)(x+1)+(x-1)(x^2+x+1)-5(x-1)=0$$
$$(x-1)[(x^3+x^2+x^2+x-4)]=0$$
$$(x-1)(x^3+2x^2+x-4)=0$$
$$(x-1)(x^3-1+2x^2+x-3)=0$$
$$(x-1)[(x-1)(x^2+x+1)+x(2x+3)-1(2x+3)]=0$$
$$(x-1)^2(x^2+3x+4)=0$$
Therefore, $x=1$ and $x=\frac{-3\pm\iota\sqrt{7}}{2}$ are the solutions to this polynomial.