6

How can we get a closed expression for this integral, $$ \int_{0}^{1}K\left ( \sqrt{1-x^2} \right ) K\left ( \sqrt{1-x^4} \right )\text{d}x$$ where an complete elliptic integral $K(x)$ defined by $\int_{0}^{1} \frac{1}{\sqrt{1-t^2}\sqrt{1-x^2t^2} }\text{d}t$ for $|x|<1$ appears and $x$ is the elliptic modulus?

  • Observation 1: We can make a use of $$ \int_{0}^{1}x^n K\left ( \sqrt{1-x^2} \right )\text{d}x =\frac{\pi}{4} \frac{\Gamma\left ( \frac{n+1}{2} \right )^2 }{ \Gamma\left ( \frac{n+2}{2} \right )^2}. $$ However, I don't know exactly the behaviour of function $K\left ( \sqrt{1-x^4} \right)$ around $x=0$. Expanding him at other points seems to also be a messy calculation.
  • Observation 2: We may notice, $$ \int_{0}^{1}K\left ( \sqrt{1-x^2} \right ) K\left ( \sqrt{1-x^4} \right )\text{d}x=2\int_{0}^{1} \frac{K\left ( \frac{x}{\sqrt{1+x^2} } \right ) K\left ( \sqrt{1-x^4} \right ) }{ \sqrt{1+x^2} }\text{d}x. $$

I am grateful for all your help.

  • $\sqrt{1-x^4} = \sqrt{1-x^2}\sqrt{1+x^2}$. Since the second term appears in the other simplification you wrote, is there another elliptic function identity you can use to separate out a product like that? – Ninad Munshi Jan 20 '23 at 07:13
  • The identity $$K(\sqrt{1-x^4}) = \frac{4K(x^2)}{\pi}\log\left(\frac{2}{x}\right) - 2\left[\left(\frac{1}{2}\right)^{2}\left(\frac{1}{1\cdot 2}\right)x^{4} + \left(\frac{1\cdot 3}{2\cdot 4}\right)^{2}\left(\frac{1}{1\cdot 2} + \frac{1}{3\cdot 4}\right)x^{8} + \cdots\right]$$ may help, but it involves a log term as well. Do you have an identity for $\int_0^1 (x^n\log x) K(\sqrt{1-x^2}),dx$? – Paramanand Singh Jan 20 '23 at 09:12
  • @ParamanandSingh Can you not differentiate the observation $1$ identity with respect to $n$? – KStar Jan 21 '23 at 23:02
  • @KStarGamer: this is a case of missing the obvious. I hope you can understand. And thanks for your response. – Paramanand Singh Jan 22 '23 at 00:36
  • @ParamanandSingh haha it’s completely okay! I’m a big fan of your answers anyway- they’ve massively helped me learn elliptic function theory. – KStar Jan 22 '23 at 01:44

1 Answers1

5

We have $$ \int_{0}^{1}K\left ( \sqrt{1-x^2} \right ) K\left ( \sqrt{1-x^4} \right )\text{d}x =\frac{1}{16}{\Gamma\left ( \frac14 \right )^4} {}_4F_3\left ( \frac14,\frac14,\frac14,\frac14; \frac12,\frac12,1;1 \right )-\frac14{\Gamma\left ( \frac34 \right )^4} {}_4F_3\left ( \frac34,\frac34,\frac34,\frac34; 1,\frac32,\frac32;1 \right ). $$ I am still curious about other approachs. We have it as a manageable series expansion, but seem less dot-able to transform it into hypergeometric series.


Substituting $k^2\rightarrow2/u$ to have the following: $$ \begin{aligned} I=\int_{0}^{1}K\left ( \sqrt{1-k^2} \right ) K\left ( \sqrt{1-k^4} \right )\text{d}k &=\frac{\sqrt{2}}4\int_{2}^{\infty} \frac{K\left ( \sqrt{1-\frac2{u}} \right ) }{\sqrt{u} } \frac{2}{u}K\left ( \sqrt{1-\frac{4}{u^2} } \right ) \text{d}u. \end{aligned} $$ Noticing that for $u>2$, $$ \frac{2}{u}K\left ( \sqrt{1-\frac{4}{u^2} } \right ) =\int_1^{u-1}\frac{1}{\sqrt{v^2-1}\sqrt{(u-v)^2-1} } \text{d}v. $$ One get $$ \begin{aligned} I & = \frac{\sqrt{2} }{4} \int_{2}^{\infty} \int_{1}^{u-1} \frac{K\left ( \sqrt{1-\frac2{u}} \right ) }{\sqrt{u} } \frac{1}{\sqrt{v^2-1}\sqrt{(u-v)^2-1} }\text{d}v\text{d}u\\ & = \frac{\sqrt{2} }{4} \int_{1}^{\infty} \int_{1}^{\infty} \frac{K\left ( \sqrt{1-\frac2{x+y}} \right ) }{\sqrt{x+y} } \frac{1}{\sqrt{x^2-1}\sqrt{y^2-1} }\text{d}x\text{d}y. \end{aligned} $$ We also notice that for $a\ge1$, $$ \int_{1}^{\infty} \frac{1}{\sqrt{x^2-1}\sqrt{a+x} } \text{d}x =\frac{2}{\sqrt{a+1} } K\left ( \sqrt{\frac{a-1}{a+1} } \right ), $$ namely, $$ \int_{1}^{\infty} \frac{1}{\sqrt{z^2-1}\sqrt{x+y+z-1} } \text{d}z =\frac{2}{\sqrt{x+y} } K\left ( \sqrt{\frac{x+y-2}{x+y} } \right ). $$ Therefore, $$ \begin{aligned} I&=\frac{\sqrt{2} }{8} \int_{1}^{\infty} \int_{1}^{\infty}\int_{1}^{\infty} \frac{1}{\sqrt{x^2-1}\sqrt{y^2-1} \sqrt{z^2-1}} \frac{1}{\sqrt{x+y+z-1} } \text{d}x \text{d}y\text{d}z,\\ &=\frac{\sqrt{2} }{8} \int_{1}^{\infty} \int_{1}^{\infty}\int_{1}^{\infty} \frac{1}{\sqrt{x^2-1}\sqrt{y^2-1} \sqrt{z^2-1}} \frac{1}{\sqrt{\pi} } \int_{0}^{\infty} \frac{e^{-(x+y+z-1)t}}{\sqrt{t} }\text{d}t \text{d}x \text{d}y\text{d}z,\\ &=\frac{\sqrt{2} }{8\sqrt{\pi} } \int_{0}^{\infty} \frac{e^x}{\sqrt{x} } K_0(x)^3\text{d}x, \end{aligned} $$ where $K_0(z)$ represents the modified Bessel function of the second kind with order zero and we use its integral representation: $$ K_0(x)=\int_{1}^{\infty} \frac{e^{-tx}}{\sqrt{t^2-1} } \text{d}t. $$ We will also use the first kind, $$ I_0(x)=\frac{1}{\pi} \int_{-1}^{1} \frac{e^{-tx}}{\sqrt{1-t^2} }\text{d}t, $$ which is an even function.


Next we integrate $$ f(z)=\frac{e^{-z}}{\sqrt{z} } K_0(z)\left [ K_0(z)+\pi iI_0(z) \right ]^2 $$ along the real-axis, having that the residue at $\infty$ is 0. We obtain $$ \int_{0}^{\infty} \frac{e^{-z}}{\sqrt{z} } K_0(z)\left [ K_0(z)+\pi iI_0(z) \right ]^2\text{d}z +\int_{0}^{\infty} \frac{e^{z}}{i\sqrt{z} } K_0(-z)\left [ K_0(-z)+\pi iI_0(z) \right ]^2\text{d}z=0. $$ And utilize the analytic continuation $K_0(-z)=K_0(z)-\pi iI_0(z)$ of the upper branch, take the imaginary part and it leaves $$ \int_{0}^{\infty} \frac{e^z}{\sqrt{z} } K_0(z)^3\text{d}z =2\pi\int_{0}^{\infty} \frac{e^{-z}}{\sqrt{z} } K_0(z)^2I_0(z) \text{d}z. $$ This way our desired integral equals to $$ \begin{aligned} I=&\frac{\sqrt{2} }{8\sqrt{\pi} } \int_{0}^{\infty} \frac{e^z}{\sqrt{z} } K_0(z)^3\text{d}z\\ =&\frac{\sqrt{2}}{4\sqrt{\pi} } \int_{0}^{\infty} \frac{e^{-z}}{\sqrt{z} } K_0(z)^2\cdot\pi I_0(z)\text{d}z\\ =&\frac{\sqrt{2} }{4} \int_{-1}^{1} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{\sqrt{x^2-1}\sqrt{y^2-1}\sqrt{1-z^2} } \frac{1}{\sqrt{1+x+y+z} } \text{d}x\text{d}y\text{d}z\\ =&\frac{\sqrt{2} }{4} \int_{1}^{\infty} \int_{1}^{\infty} \frac{2}{\sqrt{2+x+y} } K\left ( \sqrt{\frac{2}{2+x+y} } \right ) \frac1{\sqrt{x^2-1}\sqrt{y^2-1}}\text{d}x\text{d}y\\ =&\frac{\sqrt{2} }{4} \int_{2}^{\infty} \int_{1}^{u-1} \frac{2}{\sqrt{2+u} } K\left ( \sqrt{\frac{2}{2+u} } \right ) \frac1{\sqrt{(u-v)^2-1}\sqrt{v^2-1}}\text{d}v\text{d}u\\ =&\frac{\sqrt{2} }{2} \int_{2}^{\infty} \frac{K\left ( \sqrt{\frac{2}{2+u}}\right) }{\sqrt{2+u} } \frac{2}{u}K\left ( \sqrt{1-\frac{4}{u^2} } \right )\text{d}u\\ =&2\int_{0}^{1} \frac{K\left ( \frac{k}{\sqrt{1+k^2} } \right ) K\left ( \sqrt{1-k^4} \right ) }{\sqrt{1+k^2} } \text{d}k \\ =&\pi \sum_{n=0}^{\infty} \left ( -1 \right )^n \frac{\left ( \frac12 \right )_n^2 }{(1)_n^2} \int_{0}^{1}k^{2n} K\left ( \sqrt{1-k^4} \right ) \text{d}k\\ =&\pi \sum_{n=0}^{\infty} \left ( -1 \right )^n \frac{\left ( \frac12 \right )_n^2 }{(1)_n^2} \cdot\frac{\pi}{8} \frac{\Gamma\left ( \frac{n}{2}+\frac14 \right )^2 }{\Gamma\left ( \frac{n}{2}+\frac34 \right )^2}\\ =&\frac{1}{16}{\Gamma\left ( \frac14 \right )^4} {}_4F_3\left ( \frac14,\frac14,\frac14,\frac14; \frac12,\frac12,1;1 \right )-\frac14{\Gamma\left ( \frac34 \right )^4} {}_4F_3\left ( \frac34,\frac34,\frac34,\frac34; 1,\frac32,\frac32;1 \right ). \end{aligned} $$


As to a generalization, we have $$ \int_{0}^{1} k^2K\left (\sqrt{ 1-k^4 }\right ) \left [ \frac{K\left ( \sqrt{1-k^2} \right ) -E\left ( \sqrt{1-k^2} \right ) }{1-k^2} +\frac{2}{\sqrt{1+k^2} } E\left ( \frac{k}{\sqrt{1+k^2} } \right ) \right ] \text{d} k=\frac{\pi^2}{4}. $$