I'll first type the problem.
Let $(X,\mu)$ be a measure space and let $s>0$.
(a) Let $f$ be a measurable function on $X$. Show that if $0 < p < q < \infty$, we have $$ \int_{|f| \leq s} |f|^q \leq \frac{q}{q-p} s^{q-p} \|f\|_{L^{p,\infty}}^p. $$
(b) Let $f_j, 1 \le j \le m$, be measurable functions on $X$ and let $0 < p < \infty$. Show that $$\bigg|\bigg|\max_{1 \leq j \leq m} |f_j|\bigg|\bigg|_{L^{p,\infty}}^p \leq \sum_{j=1}^m \| f_j\|_{L^{p,\infty}}^p. $$
(c) Conclude from part (b) that for $0 < p < 1$ we have $$\|f_1 + \dots + f_m \|_{L^{p,\infty}}^p \leq \frac{2-p}{1-p} \sum_{j=1}^m \|f_j\|_{L^{p,\infty}}^p. $$
Hint: Part (a): Use the distribution function. Part (c): First obtain the estimate $$d_{f_1+\dots+ f_m}(\alpha) ≤ \mu({| f_1+\dots+ f_m|>\alpha,\max| f_j|≤\alpha})+d_{\max_j| f_j|}(\alpha)$$ for all $\alpha > 0$ and then use part (b).
I have managed to solve part (a) and (b) and to prove the estimate of the hint given for part (c) but I haven't been able to solve part (c). What I have done is this
$$\| f_1+\dots+f_m\|_{L^{p,\infty}}^p = \sup_{\alpha> 0} \alpha^p d_{f_1+\dots+f_m}(\alpha). $$ Thus I need to bound the right hand side for any $\alpha>0$. We have, by the estimate given in the hint
\begin{align*}\alpha^p d_{f_1+\dots+ f_m}(\alpha) &\le \alpha^p\mu({| f_1+\dots+ f_m|>\alpha,\max| f_j|≤\alpha})+\alpha^pd_{\max j} | f_j|(\alpha) \\ &\leq \alpha^p\mu({| f_1+\dots+ f_m|>α,\max| f_j|≤\alpha}) + \bigg|\bigg|\max_{1 \leq j \leq m} |f_j|\bigg|\bigg|_{L^{p,\infty}}^p\\ & \leq \alpha^p\mu({| f_1+\dots+ f_m|>\alpha,\max| f_j|≤\alpha})+\sum_{j=1}^m \| f_j\|_{L^{p,\infty}}^p \end{align*}
So I need to estimate $$\alpha^p\mu({| f_1+\dots+ f_m|>\alpha,\max| f_j|\le\alpha})$$ I noticed that if in part (a) I plug $q = 1$ and $s =1$ for $g= \max |f_j|$ I would obtain the result but I can't see how to actually relate $\alpha^p\mu({| f_1+\dots+ f_m|>\alpha,\max| f_j|≤\alpha})$ to $\int_{|\max_j |f_j|| \leq 1} | \max |f_j||$ Any help is appreciated.