Probably the most frequently cited proof of the divergence of $\sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}}$ for $\Re\left( s \right) \leq 0$ is probably the one via the n.th-term test for divergence, which states "If $\lim _{{n} \to {\infty}} a_{n} \neq 0$ or if the limit does not exist, then $\sum _{{n} = {1}}^{\infty} a_{n}$ diverges.".
for $\Re\left( s \right) \leq 0$:
$$
\begin{align*}
\sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} &= \sum_{{n} = {1}}^{\infty} \frac{1}{n^{\Re\left( s \right) + \Im\left( s \right) \cdot \mathrm{i}}}\\
\sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} &= \sum_{{n} = {1}}^{\infty} \frac{1}{n^{\Re\left( s \right)} \cdot n^{\Im\left( s \right) \cdot \mathrm{i}}} &\quad\mid\quad a_{n} = \frac{1}{n^{\Re\left( s \right)} \cdot n^{\Im\left( s \right) \cdot \mathrm{i}}}\\
\sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} &= \sum_{{n} = {1}}^{\infty} a_{n}\\
\Rightarrow \lim_{{n} \to {\infty}} a_{n} &= \lim_{{n} \to {\infty}} \frac{1}{n^{\Re\left( s \right)} \cdot n^{\Im\left( s \right) \cdot \mathrm{i}}}\\
\lim_{{n} \to {\infty}} a_{n} &= \lim_{{n} \to {\infty}} \frac{1}{n^{\Re\left( s \right)}} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}}\\
\lim_{{n} \to {\infty}} a_{n} &= \left( \lim_{{n} \to {\infty}} \frac{1}{n} \right)^{\Re\left( s \right)} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}}\\
\lim_{{n} \to {\infty}} a_{n} &= \left( 0 \right)^{\Re\left( s \right)} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}}\\
\lim_{{n} \to {\infty}} a_{n} &= \left( 0 \right)^{0} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}} &\Rightarrow \text{no convergence} \tag{if Re(s) = 0}\\
\lim_{{n} \to {\infty}} a_{n} &= \left( 0 \right)^{- \left|\Re\left( s \right) \right|} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}} = \underbrace{\frac{1}{0 ^{\left|\Re\left( s \right) \right|}}}_{= \frac{1}{0}} \cdot \lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}} &\Rightarrow \text{no convergence} \tag{if Re(s) < 0}\\
\end{align*}
$$
You could also say $\lim_{{n} \to {\infty}} \frac{1}{n^{\Im\left( s \right) \cdot \mathrm{i}}} = \left( \lim_{{n} \to {\infty}} \frac{1}{n} \right)^{\Im\left( s \right) \cdot \mathrm{i}} = 0^{\Im\left( s \right) \cdot \mathrm{i}}$, and since $0^{\mathrm{i}}$ isn't defined, neither case converges too.
However, I find the variant shown more attractive because it does not require a particularly high level of understanding of complex numbers. After all, $\frac{1}{0^{\left| \Re\left( s \right) \right|}} = \frac{1}{0} \to \text{not defined}$ and $\left( 0 \right)^{0} = 0^{0} \to \text{not defined}$ don't have much to do with it.
If you have $0 < \Re\left( s \right) \leq 1$, then arguably the most effective way of showing the divergence of it via the Integral test for convergence aka Maclaurin–Cauchy test. It says "Consider an integer $N$ and a function $f$ defined on the unbounded interval $[N, \infty)$, on which it is monotone decreasing. Then the infinite series $\sum_{n=N}^{\infty} f\left( n \right)$ converges to a real number if and only if the improper integral $\int_{N}^{\infty} f(x) \operatorname{d}x$ is finite. In particular, if the integral diverges, then the series diverges as well.":
$$
\begin{align*}
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n < \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} &< 1 +\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \int_{1}^{\infty} n^{-s} \operatorname{d}n = \lim_{{x} \to {\infty}} F\left( x \right) - F\left( 1 \right)\\
\end{align*}
$$
and thus we get:
for $\Re\left( s \right) = 1$ and $\Im\left( s \right) = 0$:
$$
\begin{align*}
F\left( n \right) = \int_{0}^{x} n^{-1 + \Im\left( s \right)} \operatorname{d}n &= \ln\left( n \right)\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \lim_{{x} \to {\infty}} \left( \ln\left( x \right) \right) - \ln\left( 1 \right)\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \infty - 0\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \infty \Rightarrow \text{no convergence}\\
&\Rightarrow \infty < \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} \Rightarrow \text{no convergence of } \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} \tag{if Re(s) = 1 and Im(s) = 0}\\
\end{align*}
$$
for $0 < \Re\left( s \right) < 1$:
$$
\begin{align*}
F\left( n \right) = \int_{0}^{x} n^{-s} \operatorname{d}n &\overbrace{=}^{\text{power rule}} \frac{1}{-s + 1} \cdot n^{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \lim_{{x} \to {\infty}} \left( \frac{1}{-s + 1} \cdot x^{-s + 1} \right) - \frac{1}{-s + 1} \cdot 1^{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{-s + 1} \cdot \lim_{{x} \to {\infty}} \left( x^{-s + 1} \right) - \frac{1}{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{-s + 1} \cdot \lim_{{x} \to {\infty}} \left( x^{-\Re\left( s \right) - \Im\left( s \right) \cdot \mathrm{i} + 1} \right) - \frac{1}{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{-s + 1} \cdot \lim_{{x} \to {\infty}} \left( x^{-\Re\left( s \right) + 1} \cdot x^{-\Im\left( s \right) \cdot \mathrm{i}} \right) - \frac{1}{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{-s + 1} \cdot \underbrace{\lim_{{x} \to {\infty}} \left( x^{\overbrace{-\Re\left( s \right) + 1}^{1 > \Re\left( s \right)}} \right)}_{\to \infty} \cdot \lim_{{x} \to {\infty}} \left( x^{-\Im\left( s \right) \cdot \mathrm{i}} \right) - \frac{1}{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{-s + 1} \cdot
\infty \cdot \lim_{{x} \to {\infty}} \left( x^{-\Im\left( s \right) \cdot \mathrm{i}} \right) - \frac{1}{-s + 1}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \infty \Rightarrow \text{no convergence}\\
&\Rightarrow \infty < \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} \Rightarrow \text{no convergence of } \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}}\\
\end{align*}
$$
for $\Re\left( s \right) = 1$ and $\Im\left( s \right) \ne 0$:
$$
\begin{align*}
F\left( n \right) = \int_{0}^{x} n^{-1 - \Im\left( s \right) \cdot \mathrm{i}} \operatorname{d}n &\overbrace{=}^{\text{power rule}} \frac{1}{-\Im\left( s \right) \cdot \mathrm{i}} \cdot n^{-\Im\left( s \right) \cdot \mathrm{i}}\\
F\left( n \right) = \int_{0}^{x} n^{-1 - \Im\left( s \right) \cdot \mathrm{i}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot n^{-\Im\left( s \right) \cdot \mathrm{i}} \cdot \mathrm{i}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \lim_{{x} \to {\infty}} \left( \frac{1}{\Im\left( s \right)} \cdot x^{-\Im\left( s \right) \cdot \mathrm{i}} \cdot \mathrm{i} \right) - \frac{1}{\Im\left( s \right)} \cdot 1^{-\Im\left( s \right) \cdot \mathrm{i}} \cdot \mathrm{i}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \lim_{{x} \to {\infty}} \left( x^{-\Im\left( s \right) \cdot \mathrm{i}} \right) \cdot \mathrm{i} - \frac{1}{\Im\left( s \right)} \cdot \mathrm{i}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} \left( x^{-\Im\left( s \right) \cdot \mathrm{i}} \right) - 1 \right) \cdot \mathrm{i}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} \left( x \right)^{-\Im\left( s \right) \cdot \mathrm{i}} - 1 \right) \cdot \mathrm{i}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} \left( x \right)^{-\left| \Im\left( s \right) \right| \cdot \mathrm{i}} - 1 \right) \cdot \mathrm{i} \tag{if Im(s) > 0}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} \left( \frac{1}{x} \right)^{\left| \Im\left( s \right) \right| \cdot \mathrm{i}} - 1 \right) \cdot \mathrm{i} \tag{if Im(s) > 0}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \underbrace{0^{\left| \Im\left( s \right) \right| \cdot \mathrm{i}}}_{0^{\mathrm{i}} \text{ is not defined}} - 1 \right) \cdot \mathrm{i} \Rightarrow \text{indeterminate} \tag{if Im(s) > 0}\\
&\Rightarrow \text{no convergence of } \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} \tag{if Im(s) > 0}\\
\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} x^{\left| \Im\left( s \right) \right| \cdot \mathrm{i}} - 1 \right) \cdot \mathrm{i} \tag{if Im(s) < 0}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \lim_{{x} \to {\infty}} e^{\ln\left( x \right) \cdot \left| \Im\left( s \right) \right| \cdot \mathrm{i}} - 1 \right) \cdot \mathrm{i} \tag{if Im(s) < 0}\\
\int_{1}^{\infty} \frac{1}{n^{s}} \operatorname{d}n &= \frac{1}{\Im\left( s \right)} \cdot \left( \underbrace{\lim_{{x} \to {\infty}} \cos\left( \ln\left( x \right) \cdot \left| \Im\left( s \right) \right| \right)}_{\lim_{{u} \to {\infty}} \cos\left( u \right) \text{ is not defined}} + \underbrace{\lim_{{x} \to {\infty}} \sin\left( \ln\left( x \right) \left| \cdot \Im\left( s \right) \right| \right)}_{\lim_{{u} \to {\infty}} \sin\left( u \right) \text{ is not defined}} \cdot \mathrm{i} - 1 \right) \cdot \mathrm{i} \Rightarrow \text{indeterminate} \tag{if Im(s) < 0}\\
&\Rightarrow \text{no convergence of } \sum_{{n} = {1}}^{\infty} \frac{1}{n^{s}} \tag{if Im(s) < 0}\\
\end{align*}
$$
But you can also consider these cases as special cases p-series $\left( \sum_{{n} = {1}}^{\infty} \frac{1}{n^{p}}, p > 0 \right)$. This could save you a lot of work for non-complex $s$.