Question: Prove that $$\int_C d\mathbf{r} \times \mathbf{F} = \int_S (d\mathbf{S} \times \nabla) \times \mathbf{F}$$ where $\mathbf{F}$ is a vector field, $S$ is an open surface and $C$ is the boundary of the surface.
This question states that we need to apply Stokes's theorem to the vector field $\mathbf{a} \times \mathbf{F}$ where $\mathbf{a}$ is an arbitrary constant vector. I have 2 questions regarding the linked question and answer.
They write
Stokes's theorem gives $\int_{S}(\nabla\times (\mathbf{a} \times \mathbf{F}))\cdot d\mathbf{S}=\int_{C}(\mathbf{a} \times \mathbf{F})\cdot d\mathbf{r}$. The right hand side is $\mathbf{a} \cdot \int_{C} d\mathbf{r} \times \mathbf{F}(\mathbf{r})$ [...]
Question: Should we not get $\int_{C}(\mathbf{a}\times \mathbf{F})\cdot d\mathbf{r} = \int_{C}(\mathbf{F} \times d\mathbf{r}) \cdot \mathbf{a}$ instead?
For the term on the left, the question and answer state that:
[....] The left hand side is $\int_{S}(\mathbf{a} (\nabla\cdot \mathbf{F})-(\mathbf{a} \cdot \nabla)\mathbf{F})\cdot d\mathbf{S}=\mathbf{a} \cdot \int_{S}(\nabla\cdot \mathbf{F})\cdot d\mathbf{S}-\int_{S}d\mathbf{S} \cdot (\mathbf{a} \cdot \nabla)\mathbf{F}$
[Perhaps with a sign error] \begin{align} &\mathbf{a}\cdot\int_S (d\mathbf{S}(\nabla\cdot \mathbf{F})-d\mathbf{S}\cdot(\nabla \mathbf{F})) \\&=\mathbf{a}\cdot\int_S (d\mathbf{S}\times \nabla)\times \mathbf{F} \end{align}
I can't really see how this equality holds. I have by the BAC-CAB formula that $$(d\mathbf{S} \times \nabla) \times \mathbf{F} = -d\mathbf{S}(\nabla \cdot \mathbf{F}) + \nabla(d\mathbf{S} \cdot \mathbf{F}) = -d\mathbf{S}(\nabla \cdot \mathbf{F}) + \nabla(d\mathbf{S}) \cdot \mathbf{F} + \nabla \mathbf{F} \cdot d\mathbf{S} $$
Is the above correct?
Question: How can I salvage my efforts to obtain the required result?
In another question, I saw that the gradient of a vector is a "dyadic", but I do not know what that means. Ref: https://math.stackexchange.com/questions/496060/gradient-of-a-dot-product
– Balkys Dec 22 '22 at 21:06