It is known that $a, b, c$ are the sides of the triangle. Determine the smallest value of $k$, so that $$a^3+b^3+c^3+kabc\leq\frac {k+3}{6} (a^2(b+c)+b^2(a+c)+c^2(a+b))$$
My working: $$a^3+b^3+c^3+kabc≤ \frac {k+3}{6} (a^2(b+c)+b^2(a+c)+c^2(a+b))$$ $$a^3+b^3+c^3+kabc≤ \frac {k+3}{6} (a^2b+a^2c+b^2a+b^2c+c^2a+c^2b)$$ $$a^3+b^3+c^3+kabc≤ \frac {k+3}{6} (a^2b+b^2a+a^2c+c^2a+b^2c+c^2b)$$ $$a^3+b^3+c^3+kabc≤ \frac {k+3}{6} (ab(a+b)+ac(a+c)+bc(b+c))$$
Can someone help me, I only process the data on the right side? Thank you