I'm trying to show that a $2$-form on $S^2$ is exact if and only if it integrates to zero, without appealing to de Rham's theorem (basically only using the Poincaré lemma [that every closed form on a contractible manifold is exact]).
One direction is easy, since $\partial S^2=0$, Stokes's theorem shows that if $\omega=d\psi$ for some $(n-1)$-form $\psi$ on $S^2$, then $\int_{S^2}\omega=\int_{S^2}d\psi=\int_{\emptyset}\psi=0$.
I know the usual way to go, to decompose $S^2$ into it's northern and southern hemispheres, each of which is contractible. So if $\int_{S^2}\omega=0$, this gives two $(n-1)$-forms $\psi^+$ and $\psi^-$ on the northern and southern hemispheres, respectively with $d\psi^{\pm}=\omega$ on their domains. Moreover, Stokes's theorem shows again that
$0=\int_{S^2}\omega=\int_{\{x_3\ge 0\}}d\psi^++\int_{\{x_3\le 0\}}d\psi^-=\int_{\{x_3=0\}}\iota_{\{x_3=0\}}^*(\psi^+)-\iota_{\{x_3=0\}}^*(\psi^-)$
But now I have no idea how to proceed. Thanks in advance for your help!
Also, I realize that this question has been answered before, but keep in mind I'm looking for a solution that does not use de Rham's theorem.