Here is a more general result. Let $a \in \mathbb{R}\backslash\left\{-1,-3\right\}$ and let the integral in question be $I$. For this answer, we will suppose the following:
$$\cos^2(x) =\text{ } _2F_1\left(1, \frac{1+a}{2}; \frac{3+a}{2};-\tan^2(x)\right)-\frac{2\tan^2(x)}{3+a}\text{ }_2F_1\left(2, \frac{3+a}{2}; \frac{5+a}{2};-\tan^2(x)\right)$$
(which can be seen here (I have tried multiple real values of $a$)) where $\text{ } _2F_1 (a,b;c;z)$ is the Hypergeometric Function. Applying this, we get
$$
\eqalign{
I =& \int\tan^{a}\left(x\right)dx \cr
=& \int\frac{\tan^{a}\left(x\right)}{\cos^{2}\left(x\right)}\cos^{2}\left(x\right)dx \cr
=& \int\frac{\tan^{a}\left(x\right)}{\cos^{2}\left(x\right)}\text{ } _2F_1\left(1, \frac{1+a}{2}; \frac{3+a}{2};-\tan^2(x)\right)dx \cr
&- \frac{2}{3+a}\int\frac{\tan^{2+a}\left(x\right)}{\cos^{2}\left(x\right)}\text{ }_2F_1\left(2, \frac{3+a}{2}; \frac{5+a}{2};-\tan^2(x)\right) \cr
}
$$
Next, we will suppose
$$\frac{d}{dz} \text{ } _2F_1 (a,b;c;f(z)) = \frac{ab}{c}\text{ } _2F_1 (a+1,b+1;c+1;f(z))f'(z).$$
Integrating by parts on the first integral, we let $u =\text{ }_2F_1\left(1, \frac{1+a}{2}; \frac{3+a}{2};-\tan^2(x)\right)$ and $dv = \dfrac{\tan^{a}\left(x\right)}{\cos^{2}\left(x\right)}dx$ so that $du = -\dfrac{2+2a}{3+a} \text{ } _2F_1\left(2, \frac{3+a}{2}; \frac{5+a}{2}; -\tan^2(x)\right)\tan(x)\sec^2(x)$ and $v = \dfrac{\tan^{1+a}(x)}{1+a}$. Then
$$
\eqalign{
I =& \frac{\tan^{1+a}\left(x\right)}{1+a} \text{ }_2F_1\left(1, \frac{1+a}{2}; \frac{3+a}{2};-\tan^2(x)\right) \cr
&- \frac{1}{1+a}\int\tan^{1+a}\left(x\right)\left(-\frac{1+a}{3+a}\text{ } _2F_1\left(2, \frac{3+a}{2}; \frac{5+a}{2};-\tan^2(x)\right)\right)2\tan\left(x\right)\sec^{2}\left(x\right)dx \cr
&- \frac{2}{3+a}\int\frac{\tan^{2+a}\left(x\right)}{\cos^{2}\left(x\right)} \text{ } _2F_1\left(2, \frac{3+a}{2}; \frac{5+a}{2};-\tan^2(x)\right). \cr
}
$$
Therefore,
$$\int\tan^{a}\left(x\right)dx = \frac{\tan^{1+a}\left(x\right)}{1+a} \text{ }_2F_1\left(1, \frac{1+a}{2}; \frac{3+a}{2};-\tan^2(x)\right) + C.$$