Consider the SIR model,
$$ \begin{align} \frac{dS}{dt}&= -rSI \tag 1\\ \frac{dI}{dt}&= rSI-\gamma I\tag 2\\ \frac{dR}{dt}&= \gamma I\tag 3 \end{align} $$
from $(1)$ and $(3)$ we get, $\frac{dS}{S}+\frac{dR}{\rho}=0$ and the solution $S(R)=S_0 e^{-\frac{R}{\rho}}$
So that there will always be susceptible in the population and some individuals will always escape infection. (Why?)
Now, $$\frac{dR}{dt}=\gamma \left(N-R-S_0 e^{-\frac{R}{\rho}}\right)$$
The equation can't be solved explicitly. However, if the epidemic is not very large (that is, $\rho$ is large), then $R / \rho$ is small (certainly $R / \rho<1$ ) and by Taylor series $$ e^{-R / \rho}=1-R / \rho+1 / 2(R / \rho)^2-\ldots \ldots $$ Then $$ \begin{aligned} \frac{d R}{d t} &=\gamma\left[N-R-S_0\left[1-R / \rho+1 / 2(R / \rho)^2-\ldots \ldots\right]\right.\\ &=\gamma\left[N-S_0+\left(\frac{S_0}{\rho}-1\right) R-\frac{S_0}{2}(R / \rho)^2+\ldots \ldots\right] . \end{aligned} $$ The solution of the equation
$$ R(t)=\frac{\rho^2}{S_0}\left[\left(\frac{S_0}{\rho}-1\right)+\alpha \tanh \left(\frac{1}{2} \alpha v t-\phi\right)\right] \tag 4 $$
where $\alpha=\left[\left(\frac{S_0}{\rho}-1\right)^2+\frac{2 S_0\left(N-S_0\right)}{\rho^2}\right]^{1 / 2}, \tanh z=\frac{e^z-e^{-z}}{e^z+e^{-z}}$ and $\phi=\tanh ^{-1}\left[\frac{1}{\alpha}\left(\frac{S_0}{\rho}-1\right)\right]$. As $t \rightarrow \infty,(4)$ gives $$ R_{\infty}=\frac{\rho^2}{S_0}\left(\frac{S_0}{\rho}-1+\alpha\right) \approx 2 \rho\left(1-\frac{\rho}{S_0}\right) . $$ This gives the ultimate size of the epidemic. Hence $$ \frac{d R}{d t}=\frac{\gamma \alpha^2 \rho^2}{2 S_0} \sec h^2\left(\frac{1}{2} \alpha \gamma t-\phi\right) \tag 5 $$
Equation $(5)$ defines a symmetric bell shaped curve in the $t − dR/dt$ plane. This curve is called the epidemic curve of the diseases.
I couldn't understand how they get the solution $(4)$. Another thing is, How to know that the equation $(5)$ was a symmetric bell shaped curve in the $t − dR/dt$ plane?
Any help will be appreciated. Thanks in advance.
Try to complete the square as @LutzLehmann suggest,
$$ \begin{align} &\gamma\left[N-S_0+\left(\frac{S_0}{\rho}-1\right) R-\frac{S_0}{2}(R / \rho)^2\right]\\ &\gamma(N-S_0)+\gamma \left(\frac{S_0}{\rho}-1\right) R-\frac{\gamma S_0}{2 \rho^2}R^2\\ &-\frac{\gamma S_0}{2 \rho^2}\left( R^2-\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)R-\frac{2\rho^2}{S_0}(N-S_0) \right)\\ &-\frac{\gamma S_0}{2 \rho^2} \left(R^2 - 2R\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)+\left(\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)\right)^2-\left(\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)\right)^2-\frac{2\rho^2}{S_0}(N-S_0)\right)\\ & -\frac{\gamma S_0}{2 \rho^2}\left(\left( R-\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)\right)^2-\left(\frac{2\rho^2}{S_0}\left(\frac{S_0}{\rho}-1\right)\right)^2-\frac{2\rho^2}{S_0}(N-S_0)\right) \end{align} $$