Is the following: $$(\mathbb{Z}\oplus \mathbb{Z}) / \mathbb{Z} = \mathbb{Z}$$
just the informal way of going through the isomorphism of $\mathbb{Z}$ with the group $$\tilde{\mathbb{Z}} := \{ (z,0) | z \in \mathbb{Z} \}$$ i.e., formally:
$$(\mathbb{Z}\oplus \mathbb{Z}) / \tilde{\mathbb{Z}} = \tilde{\mathbb{Z}} \sim \mathbb{Z}$$