My attempt
$$u_t = -v Ʊ'$$
$$u_x = Ʊ'$$
$$u_{xx} = Ʊ''$$
$$-v Ʊ' + Ʊ Ʊ' = \nu Ʊ''$$
$$-v + Ʊ = \nu \frac{Ʊ''}{Ʊ'}$$
$$-vƱ + \frac{Ʊ^2}{2} + C = \nu \ln Ʊ'$$
$$exp(-\frac{vƱ}{\nu} + \frac{Ʊ^2}{2\nu} + \frac{C}{\nu}) = Ʊ' = \frac{dƱ}{d\xi}$$
$$d\xi = exp(\frac{vƱ}{\nu} - \frac{Ʊ^2}{2\nu} - \frac{C}{\nu}) dƱ$$
But integrating the RHS integral, I get a very ugly looking function involving the Erf function
So I don't know if the way I calculated it is the right one.
Our Prof told us that while calculating the solution, we should use the assumptions that:
$$\lim_{\xi \rightarrow -\infty} Ʊ (\xi) = u_2$$
$$\lim_{\xi \rightarrow \infty} Ʊ (\xi) = u_1$$
where $u_2 \ge u_1 \ge 0$.
But I don't see how to use it here.