0

Find the Fourier transform of $f(x)=\alpha, ~\alpha\in\mathbb{C}$.

Solution:\begin{align*} T(u)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{iux}f(x) dx\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^0 e^{iux}f(x)dx+\frac{1}{\sqrt{2\pi}}\int_{0}^\infty e^{iux}f(x)dx\\ &=\alpha\frac{1}{\sqrt{2\pi}}\int_{-\infty}^0 e^{iux}dx+\alpha\frac{1}{\sqrt{2\pi}}\int_{0}^\infty f(x)dx\\ &=\frac{\alpha}{\sqrt{2\pi}}\lim_{a\to\infty}\left[\frac{e^{iux}}{iu}\right]_{-a}^0+\frac{\alpha}{\sqrt{2\pi}}\lim_{a\to\infty}\left[\frac{e^{iux}}{iu}\right]_{0}^a\\ &=\frac{\alpha}{\sqrt{2\pi}}\lim_{a\to\infty}\left[\frac{1}{iu}-\frac{e^{-iua}}{iu}+\frac{e^{iua}}{iu}-\frac{1}{iu}\right]\\ &=\frac{\alpha}{\sqrt{2\pi}}\lim_{a\to\infty}\frac{2i\sin (ua)}{iu}\\ &=\sqrt{\frac{2}{\pi}}\frac{\alpha}{u}\lim_{a\to\infty}\sin (ua) \end{align*}

But in the last line limit doesn't exist. So how do we find the Fourier transform of this function. Please help me out!

Unknown
  • 3,105

1 Answers1

2

As @Zerox commented.

\begin{align*} T(u)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{iux}f(x) dx\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{iux}\alpha dx\\ &=\sqrt{2\pi}\alpha\frac{1}{2\pi}\int_{-\infty}^\infty e^{iux} dx\\ &=\sqrt{2\pi}\alpha\delta(u) \end{align*}

Unknown
  • 3,105