I am trying to verify an assertion in the second bullet point of Example 10.34 (Axler Measure Theory). Note that Axler uses the notation $\text{sp}(T)$ to denote the spectrum of $T$.
Let $E_\epsilon := \{t \in \mathbb R : | h(t) - \alpha | < \epsilon \}$.
Claim: $\alpha \in \text{sp}(M_h) \iff | E_\epsilon| > 0, \forall \epsilon > 0$
$(\Longrightarrow)$ Assume $\alpha \in \text{sp}(M_h)$.
This means that for each $f, g, \in L^2$, $$ (h - \alpha)f = M_h f - \alpha f = g $$ has no solution. In other words, $$ f = \frac g {(h - \alpha)} \notin L^2$$
The claim is satisfied if $\alpha \in e(M_h)$ because f is undefined on a set of positive measure (see the first proposition). So assume $\alpha \notin e(M_h)$. Then
$$ ||f|| = ||\frac g {(h - \alpha)}|| = \infty$$
And
\begin{align} \infty &= \left\Vert \frac g {(h - \alpha)} \right\Vert_2^2 \\ &= \left\Vert \frac {g^2} {(h - \alpha)^2} \right\Vert_1 \\ &\le \Vert g^2 \Vert_1 \left\Vert \frac 1 {(h- \alpha)^2} \right\Vert_\infty \\ &= \Vert g \Vert_2^2 \left\Vert \frac 1 {(h- \alpha)^2} \right\Vert_\infty \end{align}
The last equality implies that $$ \left\Vert \frac 1 {(h- \alpha)^2} \right\Vert_\infty = \infty $$
So we obtain $|E_\epsilon| > 0, \forall \epsilon > 0$.
$(\Leftarrow)$ Assume $|E_\epsilon| > 0, \forall \epsilon > 0$ holds for some $\alpha \in F$.
Suppose there exists $f, g \in L^2$ such that $f \neq 0$ and $$ f = \frac g {h - \alpha} $$
So $g \neq 0$. Define $$ E := \bigcup_{\epsilon > 0 } E_\epsilon $$ $$ F := \{ t \in E : g(t) \neq 0 \} $$
Because $f \in L^2$, we must have $ |F| = 0 $, otherwise the norm of $f$ is $\infty$. Now define $$ G := \{ t \in E^c : g(t) \neq 0 \} $$
Because $ g \neq 0$, we must have $|G| > 0$. Because $\mathbb R$ is $\sigma$-finite, we can assume that $G$ is finite (or otherwise intersect it with a finite measurable set, where that intersection will have nonzero measure).
Now let $H \subset E^c$ be such that $0 < |H| < \infty$.
So if $g = \chi_H$, don't we have a solution for $f$? On H, $\frac 1 {h - \alpha}$ can't be made arbitrarily large (because we're in $H$) or small (because its $ h - \alpha \in L^\infty$). So
$$ f = \frac {\chi_H} {h - \alpha} \in L^2 - {0}$$
What am I missing?
